Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
46 - Assessing wedge failure
from Stereographic Projection Techniques for Geologists and Civil Engineers
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
Summary
The kinematics of wedge failure, like plane failure, can be analysed from data consisting of the angle of sliding friction, φ, and the orientation of the rock slope.
With plane failure, dangerous orientations of planes of weakness map onto the stereogram in terms of their plane normals (poles). In contrast, when considering wedge failure we consider the orientation of the direction of wedge sliding, parallel to the intersection line of two sets of discontinuities (Fig. 46a).
Friction cone
To overcome frictional resistance under dry conditions, the plunge of the intersection line of the two discontinuities must exceed the sliding friction angle. All intersection lines in dangerous (steep) attitudes lie inside a cone consisting of all lines with a plunge equal to φ (Fig. 46b). This is the friction cone which gives a small circle on the stereogram (Fig. 46c).
Daylighting
Intersection line 1 in Figure 46d allows the possibility of wedge failure because it plunges (or at least has a component of plunge) in the direction of the natural slope and has an angle of plunge less than the apparent dip of the slope in the plunge direction. Intersection line 2 (Fig. 46d) would not permit wedge failure because it has a component of plunge into the slope. Lines 3 and 4 are intermediate cases where the intersection line lies with the plane of the slope. Therefore, on the stereogram, the great circle representing the plane of the slope corresponds to the daylight envelope.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2004