Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
24 - Analysing folds 3. Style of folding
from Stereographic Projection Techniques for Geologists and Civil Engineers
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
Summary
Measurement of the attitude of folded bedding or other foliation, if analysed stereographically, can permit certain geometrical properties of the folds to be determined. These deductions can be made even in areas where rock exposures are scarce, and as a result folds are hardly ever seen. An example of the type of technique employed was described on p. 44 where, if the poles to bedding plot along a great circle, this is interpreted to mean that the folds involved are cylindrical.
In addition, the way in which the poles are distributed within the great circle girdle can suggest other features of the folding to be discussed below, e.g. tightness (inter-limb angle), curvature and asymmetry. Unfortunately there exist other factors which potentially influence the spread of poles within the great circle, in particular the distribution of the sites at which measurements of the bedding have been made. The pattern on the stereogram can be biased by this sampling effect. For this reason care must be taken with the deduction of fold shape from stereograms.
Fold tightness
The range of orientations of the folded surface is restricted in an open fold (e.g. Fig. 24c) but is greater in a tight fold (Fig. 24i). The stereograms resulting from open structures show a lower degree of spread of poles than for tight folds. In Figure 24b, 24c and 24f where fold profile shapes are illustrated together with representative stereograms, a pole-free part of the great circle can be identified.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2004