Book contents
- Frontmatter
- Contents
- Nomenclature
- Preface
- 1 Quantum Mechanics and Energy Storage in Particles
- 2 Statistical Treatment of Multiparticle Systems
- 3 A Macroscopic Framework
- 4 Other Ensemble Formulations
- 5 Ideal Gases
- 6 Dense Gases, Liquids, and Quantum Fluids
- 7 Solid Crystals
- 8 Phase Transitions and Phase Equilibrium
- 9 Nonequilibrium Thermodynamics
- 10 Nonequilibrium and Noncontinuum Elements of Microscale Systems
- Appendix I Some Mathematical Fundamentals
- Appendix II Physical Constants and Prefix Designations
- Appendix III Thermodynamics Properties of Selected Materials
- Appendix IV Typical Force Constants for the Lennard–Jones 6-12 Potential
- Index
2 - Statistical Treatment of Multiparticle Systems
Published online by Cambridge University Press: 06 January 2010
- Frontmatter
- Contents
- Nomenclature
- Preface
- 1 Quantum Mechanics and Energy Storage in Particles
- 2 Statistical Treatment of Multiparticle Systems
- 3 A Macroscopic Framework
- 4 Other Ensemble Formulations
- 5 Ideal Gases
- 6 Dense Gases, Liquids, and Quantum Fluids
- 7 Solid Crystals
- 8 Phase Transitions and Phase Equilibrium
- 9 Nonequilibrium Thermodynamics
- 10 Nonequilibrium and Noncontinuum Elements of Microscale Systems
- Appendix I Some Mathematical Fundamentals
- Appendix II Physical Constants and Prefix Designations
- Appendix III Thermodynamics Properties of Selected Materials
- Appendix IV Typical Force Constants for the Lennard–Jones 6-12 Potential
- Index
Summary
Using the basic features of microscale energy storage discussed in Chapter 1, in Chapter 2 we develop the foundations of statistical thermodynamics. In doing so, we introduce the concepts of microstates and macrostates and properly account for the fact that particles in fluid systems are generally indistinguishable. The development of the theoretical framework in this and subsequent chapters considers a binary mixture of two particle types. The statistical machinery is applied first to a microcanonical ensemble of systems, each having a specified volume, number of particles, and total internal energy. Definitions of entropy and temperature emerge from this development. Application of the results to a monatomic gas is discussed.
Microstates and Macrostates
In this chapter we will construct a general statistical mechanics foundation on which we will develop a full equilibrium thermodynamic theory for systems composed of a large number of particles. In doing so we will make use of the information about energy storage derived from quantum theory in the previous chapter.
In analyzing systems of particles, we can deal with the state of a system at two levels: the microstate of the system and the macrostate of the system. The system microstate is the detailed configuration of the system at a microscopic level. To specify the microstate we would have to specify the quantum state (including the position) of each particle in the system. If we observe a system at a macroscopic level, we can, at best, distinguish some of the gross characteristics of the system.
- Type
- Chapter
- Information
- Statistical Thermodynamics and Microscale Thermophysics , pp. 29 - 70Publisher: Cambridge University PressPrint publication year: 1999