Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
8 - Effusion Processes
Published online by Cambridge University Press: 14 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
Summary
Effusion is one of the most elementary kinetic processes, to which the concepts of nonequilibrium statistical mechanics can be applied. Remarkably, the stationary probability distribution can be exactly constructed as a so-called Poisson suspension, explicitly showing that time reversal is broken at the statistical level of description under nonequilibrium conditions. The multivariate fluctuation relation for the energy and particle currents can be directly deduced from the underlying microscopic dynamics. Moreover, temporal disorder and its nonequilibrium time asymmetry can be fully characterized and shown to be related to the thermodynamic entropy production. The multivariate fluctuation relation can also be applied to mass separation by effusion.
Keywords
- Type
- Chapter
- Information
- The Statistical Mechanics of Irreversible Phenomena , pp. 319 - 332Publisher: Cambridge University PressPrint publication year: 2022