Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
7 - Driven Brownian Particles and Related Systems
Published online by Cambridge University Press: 14 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
Summary
The experimental observation of driven Brownian motion and an analogous electric circuit confirms that the thermodynamic entropy production can be measured using the probabilities of the paths and their time reversal, i.e., from time asymmetry in temporal disorder. In this way, irreversibility is observed down to the nanometric scale in the position of the driven Brownian particle and a few thousand electron charges in the driven electric circuit. In addition, underdamped and overdamped driven Langevin processes are shown to obey the fluctuation relation and its consequences are discussed. The following examples are considered: a particle moving in a periodic potential and driven by an external force, a driven noisy pendulum, a driven noisy Josephson tunneling junction, the stochastic motion of a charged particle in electric and magnetic fields, and heat transport driven by thermal reservoirs.
Keywords
- Type
- Chapter
- Information
- The Statistical Mechanics of Irreversible Phenomena , pp. 296 - 318Publisher: Cambridge University PressPrint publication year: 2022