Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T11:55:25.502Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 April 2020

Manfred Mudelsee
Affiliation:
Climate Risk Analysis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. T. (2018) Climate change and severe thunderstorms. In: von Storch, H. (Ed.) Oxford Research Encyclopedia of Climate Science. Oxford University Press, New York. [doi:10.1093/acrefore/9780190228620.013.62]Google Scholar
Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., Zenes, N. (2018) Hydraulic diversity of forest regulates ecosystem resilience during drought. Nature 561(7724): 538541.Google Scholar
Aristotle (1936) Aristotle’s Physics: A Revised Text with Introduction and Commentary. Translated and commented by W. D. Ross. Clarendon Press, Oxford, 750 pp.Google Scholar
Battaglia, F., Protopapas, M. K. (2012) An analysis of global warming in the Alpine region based on nonlinear nonstationary time series models. Statistical Methods and Applications 21(3): 315334.Google Scholar
Bell, E. T. (1986) Men of Mathematics. First Touchstone edition. Simon & Schuster, New York, 590 pp. [originally published in 1937]Google Scholar
Besonen, M. R. (2006) A 1,000 year high-resolution hurricane history for the Boston area based on the varved sedimentary record from the Lower Mystic Lake (Medford/Arlington, MA). Ph.D. Dissertation. University of Massachusetts at Amherst, Amherst, MA, 297 pp.Google Scholar
Besonen, M. R., Bradley, R. S., Mudelsee, M., Abbott, M. B., Francus, P. (2008) A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts. Geophysical Research Letters 35(14): L14705. [doi:10.1029/2008GL033950]Google Scholar
Bigler, C., Bugmann, H. (2018) Climate-induced shifts in leaf unfolding and frost risk of European trees and shrubs. Scientific Reports 8(1): 9865. [doi:10.1038/s41598-018-27893-1]Google Scholar
Biswas, T. K., Mosley, L. M. (2019) From mountain ranges to sweeping plains, in droughts and flooding rains; river Murray water quality over the last four decades. Water Resources Management 33(3): 10871101.CrossRefGoogle Scholar
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., Živković, N. (2019) Changing climate both increases and decreases European river floods. Nature 573(7772): 108111.Google Scholar
Bork, H.-R., Bork, H., Dalchow, C., Faust, B., Piorr, H.-P., Schatz, T. (1998) Landschaftsentwicklung in Mitteleuropa. Klett-Perthes, Gotha, 328 pp. [in German]Google Scholar
Box, G. E. P. (1953) Non-normality and tests on variances. Biometrika 40(3–4): 318335.Google Scholar
Box, G. E. P., Muller, M. E. (1958) A note on the generation of random normal deviates. Annals of Mathematical Statistics 29(2): 610611.CrossRefGoogle Scholar
Box, J. F. (1978) R.A. Fisher: The Life of a Scientist. Wiley, New York, 512 pp.Google Scholar
Bradley, R. S. (1999) Paleoclimatology: Reconstructing Climates of the Quaternary. Second edition. Academic Press, San Diego, 610 pp.Google Scholar
Brázdil, R., Glaser, R., Pfister, C., Dobrovolný, P., Antoine, J.-M., Barriendos, M., Camuffo, D., Deutsch, M., Enzi, S., Guidoboni, E., Kotyza, O., Rodrigo, F. S. (1999) Flood events of selected European rivers in the sixteenth century. Climatic Change 43(1): 239285.Google Scholar
Brockwell, P. J., Davis, R. A. (1991) Time Series: Theory and Methods. Second edition. Springer, New York, 577 pp.Google Scholar
Brockwell, P. J., Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer, New York, 420 pp.Google Scholar
Brönnimann, S., Luterbacher, J., Ewen, T., Diaz, H. F., Stolarski, R. S., Neu, U. (Eds.) (2008) Climate Variability and Extremes during the Past 100 Years. Springer, Dordrecht, Netherlands, 361 pp.CrossRefGoogle Scholar
Brooks, M. M., Marron, J. S. (1991) Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions. Stochastic Processes and their Applications 38(1): 157165.Google Scholar
Brückner, E. (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit [Climate variations since 1700 and remarks on climate variations in diluvial time]. Geographische Abhandlungen 4(2): 153484. [in German]Google Scholar
Bryant, E. (1991) Natural Hazards. Cambridge University Press, Cambridge, 294 pp.Google Scholar
Bundesanstalt für Gewässerkunde (2000) Untersuchungen zum Abflussregime der Elbe. Bundesanstalt für Gewässerkunde, Berlin. [BfG-Bericht No. 1228; in German]Google Scholar
Cannell, M. G. R., Smith, R. I. (1986) Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology 23(1): 177191.Google Scholar
Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R. (2001) Parallel Programming in OpenMP. Academic Press, San Diego, 230 pp.Google Scholar
Chatfield, C. (2004) The Analysis of Time Series: An Introduction. Sixth edition. Chapman & Hall, Boca Raton, FL, 333 pp.Google Scholar
Chirila, D. B., Lohmann, G. (2015) Introduction to Modern Fortran for the Earth System Sciences. Springer, Heidelberg, 250 pp.Google Scholar
Christensen, J. H., Krishna, Kumar K., Aldrian, E., An, S.-I., Cavalcanti, I. F. A., de Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D. B., Xie, S.-P., Zhou, T. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 12171308.Google Scholar
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., Jones, J. (2014) Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7(9): 627637.Google Scholar
Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer, London, 208 pp.Google Scholar
Conradt, T., Roers, M., Schröter, K., Elmer, F., Hoffmann, P., Koch, H., Hattermann, F. F., Wechsung, F. (2013) Vergleich der Extremhochwässer 2002 und 2013 im deutschen Teil des Elbegebiets und deren Abflusssimulation durch SWIM-live. Hydrologie und Wasserbewirtschaftung 57(5): 241– 245. [in German]Google Scholar
Cowling, A., Hall, P. (1996) On pseudodata methods for removing boundary effects in kernel density estimation. Journal of the Royal Statistical Society, Series B 58(3): 551563.Google Scholar
Cowling, A., Hall, P., Phillips, M. J. (1996) Bootstrap confidence regions for the intensity of a Poisson point process. Journal of the American Statistical Association 91(436): 15161524.Google Scholar
Cox, D. R., Lewis, P. A. W. (1966) The Statistical Analysis of Series of Events. Methuen, London, 285 pp.Google Scholar
Cronin, T. M. (2010) Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, New York, 441 pp.Google Scholar
Dahlquist, G., Björck, Å. (2008) Numerical Methods in Scientific Computing, volume 1. SIAM, Philadelphia, PA, 717 pp. [there exists a second volume, which has not yet been published]Google Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., Bond, G. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434): 218220.Google Scholar
Delgado, S., Landsea, C. W., Willoughby, H. (2018) Reanalysis of the 1954–63 Atlantic hurricane season. Journal of Climate 31(11): 41774192.Google Scholar
Wetterdienst, Deutscher (2002) Klimastatusbericht 2001. Deutscher Wetterdienst, Offenbach am Main, 290 pp. [in German]Google Scholar
Donat, M. G., Alexander, L. V., Herold, N., Dittus, A. J. (2016) Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. Journal of Geophysical Research: Atmospheres 121(19): 1117411189.Google Scholar
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Caesar, J. (2013a) Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society 94(7): 9971006.CrossRefGoogle Scholar
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A. M. G., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M., Oria, Rojas C., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S., Srivastava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P., Zhang, X., Kitching, S. (2013b) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres 118(5): 20982118.Google Scholar
Efron, B. (1979) Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7(1): 126.Google Scholar
Efron, B., Hastie, T. (2016) Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge University Press, New York, 475 pp.Google Scholar
Efron, B., Tibshirani, R. J. (1993) An Introduction to the Bootstrap. Chapman & Hall, New York, 436 pp.Google Scholar
Ellis, T. M. R., Philips, I. R., Lahey, T. M. (1994) Fortran 90 Programming. Addison-Wesley, Harlow, United Kingdom, 825 pp.Google Scholar
Elsner, J. B., Kara, A. B. (1999) Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, New York, 488 pp.Google Scholar
Emanuel, K. A. (1987) The dependence of hurricane intensity on climate. Nature 326(6112): 483485.Google Scholar
Engeln-Müllges, G., Reutter, F. (1993) Numerik-Algorithmen mit FORTRAN 77-Programmen. Seventh edition. BI Wissenschaftsverlag, Mannheim, 1245 pp. [in German]Google Scholar
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., Taylor, K. E. (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Delevopment 9(5): 19371958.Google Scholar
Fairchild, I. J., Baker, A. (2012) Speleothem Science: From Process to Past Environments. Wiley-Blackwell, Chichester, 432 pp.Google Scholar
Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., Webster, J. M. (2014) Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications 5: 4102. [doi:10.1038/ncomms5102]Google Scholar
Fischer, E. M., Schär, C. (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience 3(6): 398403.Google Scholar
Fisher, R. A. (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4): 507521.Google Scholar
Fisher, R. A. (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1(4): 332.Google Scholar
Fisher, R. A. (1922) On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A 222: 309368.Google Scholar
Fisher, R. A. (1925) Theory of statistical estimation. Mathematical Proceedings of the Cambridge Philosophical Society 22(5): 700725.Google Scholar
Fisher, R. A. (1929) Tests of significance in harmonic analysis. Proceedings of the Royal Society of London, Series A 125(796): 5459.Google Scholar
Fisher, R. A., Tippett, L. H. C. (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society 24(2): 180190.Google Scholar
Fishman, G. S. (1996) Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York, 698 pp.CrossRefGoogle Scholar
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M. (2013) Evaluation of climate models. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 741866.Google Scholar
Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A. A., Buettner, A., Hippler, D., Matter, A. (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26(1–2): 170188.Google Scholar
Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A. (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626): 17371739.Google Scholar
Fohlmeister, J., Scholz, D., Kromer, B., Mangini, A. (2011) Modelling carbon isotopes of carbonates in cave drip water. Geochimica et Cosmochimica Acta 75(18): 52195228.Google Scholar
Folland, C. K., Miller, C., Bader, D., Crowe, M., Jones, P., Plummer, N., Richman, M., Parker, D. E., Rogers, J., Scholefield, P. (1999) Workshop on Indices and Indicators for Climate Extremes, Asheville, NC, USA, 3–6 June 1997 – Breakout Group C: Temperature indices for climate extremes. Climatic Change 42(1): 3143.Google Scholar
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., Miller, H. L. Jr, Chen, Z. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 129234.Google Scholar
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., Clavel, J., Jougla, E., Hémon, D. (2006) Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health 80(1): 1624.Google Scholar
Giffard-Roisin, S., Yang, M., Charpiat, G., Kégl, B., Monteleoni, C. (2018) Fused deep learning for hurricane track forecast from reanalysis data. 8th International Workshop on Climate Informatics, National Center for Atmospheric Research, Boulder, CO, 19 to 21 September 2018, 4 pp.Google Scholar
Giorgi, F., Gao, X.-J. (2018) Regional earth system modeling: Review and future directions. Atmospheric and Oceanic Science Letters 11(2): 189197.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G. (Eds.) (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589 pp.Google Scholar
Hager, G., Wellein, G. (2011) Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton, FL, 330 pp.Google Scholar
Hammond, J. M. (1990) Storm in a teacup or winds of change? Weather 45(12): 443448.Google Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A.-R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., Zhai, P. (2013) Observations: Atmosphere and surface. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 159254.Google Scholar
Hill, B. M. (1975) A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3(5): 11631174.Google Scholar
Hosking, J. R. M. (1985) Maximum-likelihood estimation of the parameters of the Generalized Extreme-Value distribution. Applied Statistics 34(3): 301310.Google Scholar
Hübener, W. (1983) Occam’s Razor not mysterious. Archiv für Begriffs-geschichte 27: 7392. [in German, with excerpts in English, French, Greek, and Latin]Google Scholar
Hurrell, J. W. (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269(5524): 676679.Google Scholar
Huxham, J. (1758) An account of the extraordinary heat of the weather in July 1757, and of the effects of it. Philosophical Transactions of the Royal Society of London 50(2): 523524.Google Scholar
Ivanovich, M., Harmon, R. S. (Eds.) (1992) Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Second edition. Clarendon Press, Oxford, 910 pp.Google Scholar
Jílek, P., Melková, J., Růžičková, E., Šilar, J., Zeman, A. (1995) Radiocarbon dating of Holocene sediments: Flood events and evolution of the Labe (Elbe) river in central Bohemia (Czech Republic). Radiocarbon 37(2): 131137.Google Scholar
Johnson, N. L., Kotz, S., Balakrishnan, N. (1994) Continuous Univariate Distributions, volume 1. Second edition. Wiley, New York, 756 pp.Google Scholar
Johnson, N. L., Kotz, S., Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 2. Second edition. Wiley, New York, 719 pp.Google Scholar
Jun, M., Knutti, R., Nychka, D. W. (2008) Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? Journal of the American Statistical Association 103(483): 934947.Google Scholar
Kendall, M. G. (1954) Note on bias in the estimation of autocorrelation. Biometrika 41(3–4): 403404.Google Scholar
Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A. M., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., Wang, H.-J. (2013) Near-term climate change: Projections and predictability. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 9531028.Google Scholar
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., López, J. A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., Petrovic, P. (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22(12): 14411453.Google Scholar
Knabb, R. D., Rhome, J. R., Brown, D. P. (2011) Tropical Cyclone Report: Hurricane Katrina, 23–30 August 2005. National Oceanic and Atmospheric Administration, National Hurricane Center, Miami, 43 pp.Google Scholar
Königliche Elbstrom-Bauverwaltung (1893) Hydrologischer Jahresbericht von der Elbe für 1892 [Hydrological annual report of the Elbe for 1892]. Baensch, Magdeburg, 296 pp. [in German]Google Scholar
Elbstrombauverwaltung, Königliche (1898) Der Elbstrom, sein Stromgebiet und seine wichtigsten Nebenflüsse, volume 3.1. Dietrich Reimer, Berlin, 436 pp. [in German]Google Scholar
Körber, H.-G. (1993) Die Geschichte des Meteorologischen Observatoriums Potsdam [The history of the meteorological observatory Potsdam]. Deutscher Wetterdienst, Offenbach am Main, 129 pp. [in German]Google Scholar
Kropp, J. P., Schellnhuber, H. J. (Eds.) (2011) In Extremis: Disruptive Events and Trends in Climate and Hydrology. Springer, Berlin, 320 pp.Google Scholar
Kuhn, T. S. (1970) The Structure of Scientific Revolutions. Second edition. University of Chicago Press, Chicago, 210 pp.Google Scholar
Landsea, C. W., Anderson, C., Charles, N., Clark, G., Dunion, J., Fernández-Partagás, J., Hungerford, P., Neumann, C., Zimmer, M. (2004) The Atlantic Hurricane Database Reanalysis Project: Documentation for 1851–1910 alterations and additions to the HURDAT database. In: Murnane, R. J., Liu, K.-b. (Eds.) Hurricanes and Typhoons: Past, Present, and Future. Columbia University Press, New York, pp. 177221.Google Scholar
Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C., Beck, C., Pfister, C., Wanner, H. (2001) The late Maunder Minimum (1675–1715) – A key period for studying decadal scale climatic change in Europe. Climatic Change 49(4): 441462.Google Scholar
Ma, Q., Huang, J.-G., Hänninen, H., Berninger, F. (2018) Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Global Change Biology 25(1): 351360.Google Scholar
Macleod, A. J. (1989) A remark on algorithm AS 215: Maximum-likelihood estimation of the parameters of the Generalized Extreme-Value distribution. Applied Statistics 38(1): 198199.Google Scholar
Manley, G. (1974) Central England temperatures: Monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society 100(425): 389405.Google Scholar
Mann, M. E., Woodruff, J. D., Donnelly, J. P., Zhang, Z. (2009) Atlantic hurricanes and climate over the past 1,500 years. Nature 460(7257): 880883.Google Scholar
Marron, J. S. (1988) Automatic smoothing parameter selection: A survey. Empirical Economics 13(3–4): 187208.Google Scholar
Marsaglia, G., Zaman, A. (1994) Some portable very-long-period random number generators. Computers in Physics 8(1): 117121.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., Timmermann, A. (2013) Information from paleoclimate archives. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 383464.Google Scholar
Meier, M., Fuhrer, J., Holzkämper, A. (2018) Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone valley. International Journal of Biometeorology 62(6): 9911002.Google Scholar
Michalewicz, Z., Fogel, D. B. (2000) How to Solve It: Modern Heuristics. Springer, Berlin, 467 pp.Google Scholar
Militzer, S. (1998) Klima, Umwelt, Mensch (1500–1800): Studien und Quellen zur Bedeutung von Klima und Witterung in der vorindus-triellen Gesellschaft [Climate, environment, man (1500–1800): Studies and sources on the relevance of climate and weather in the preindustrial society], volume 1–3. University of Leipzig, Leipzig, 1971 pp. [in German]Google Scholar
Montgomery, D. C., Peck, E. A. (1992) Introduction to Linear Regression Analysis. Second edition. Wiley, New York, 527 pp.Google Scholar
Mudelsee, M. (2000) Ramp function regression: A tool for quantifying climate transitions. Computers and Geosciences 26(3): 293307.Google Scholar
Mudelsee, M. (2002) TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers and Geosciences 28(1): 6972.Google Scholar
Mudelsee, M. (2014) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, Switzerland, 454 pp.CrossRefGoogle Scholar
Mudelsee, M. (2019) Trend analysis of climate time series: A review of methods. Earth-Science Reviews 190: 310322. [doi:10.1016/j.earscirev.2018.12.005]Google Scholar
Mudelsee, M., Bermejo, M. A. (2017) Optimal heavy tail estimation – Part 1: Order selection. Nonlinear Processes in Geophysics 24(4): 737744.Google Scholar
Mudelsee, M., Bickert, T., Lear, C. H., Lohmann, G. (2014) Cenozoic climate changes: A review based on time series analysis of marine benthic δ18O records. Reviews of Geophysics 52(3): 333374.CrossRefGoogle Scholar
Mudelsee, M., Börngen, M., Tetzlaff, G., Grünewald, U. (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425(6954): 166169.Google Scholar
Mudelsee, M., Börngen, M., Tetzlaff, G., Grünewald, U. (2004) Extreme floods in central Europe over the past 500 years: Role of cyclone pathway “Zugstrasse Vb.Journal of Geophysical Research 109(D23): D23101. [doi:10.1029/2004JD005034]Google Scholar
Mudelsee, M., Deutsch, M., Börngen, M., Tetzlaff, G. (2006) Trends in flood risk of the river Werra (Germany) over the past 500 years. Hydrological Sciences Journal 51(5): 818833.Google Scholar
Munoz, S. E., Giosan, L., Therrell, M. D., Remo, J. W. F., Shen, Z., Sullivan, R. M., Wiman, C., O’Donnell, M., Donnelly, J. P. (2018) Climatic control of Mississippi river flood hazard amplified by river engineering. Nature 556(7699): 9598.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2016) Attribution of Extreme Weather Events in the Context of Climate Change. The National Academies Press, Washington, DC, 165 pp.Google Scholar
Neuendorf, K. K. E., Mehl, J. P. Jr, Jackson, J. A. (Eds.) (2005) Glossary of Geology. Fifth edition. American Geological Institute, Alexandria, VA, 779 pp.Google Scholar
Newton, I. (1687) Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiae ac Typis Josephi Streater, London, 510 pp. [In Latin; the sentence cited in our Chapter 5 is from p. 384 of the translation by Andrew Motte from the first American edition, published in 1846 by Daniel Adee, New York.]Google Scholar
Nolan, J. P. (2003) Modeling financial data with stable distributions. In: Rachev, S. T. (Ed.) Handbook of Heavy Tailed Distributions in Finance. Elsevier, Amsterdam, pp. 106130.Google Scholar
Program, Ocean Drilling (1988–2007) Proceedings of the Ocean Drilling Program, Scientific Results, volume 101–210. Ocean Drilling Program, College Station, TX.Google Scholar
Orth, R., Vogel, M. M., Luterbacher, J., Pfister, C., Seneviratne, S. I. (2016) Did European temperatures in 1540 exceed present-day records? Environmental Research Letters 11(11): 114021. [doi:10.1088/1748-9326/11/11/114021]Google Scholar
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., Allen, M. R. (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophysical Research Letters 39(4): L04702. [doi:10.1029/2011GL050422]Google Scholar
Peixoto, J. P., Oort, A. H. (1992) Physics of Climate. American Institute of Physics, New York, 520 pp.Google Scholar
Perkins, S. E., Alexander, L. V. (2013) On the measurement of heat waves. Journal of Climate 26(13): 45004517.Google Scholar
Pielke, R. A. Jr, Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., Musulin, R. (2008) Normalized hurricane damage in the United States: 1900–2005. Natural Hazards Review 9(1): 2942.Google Scholar
Pierce, C. H. (1939) The meteorological history of the New England Hurricane of Sept. 21, 1938. Monthly Weather Review 67(8): 237285.Google Scholar
Pierrehumbert, R. T. (2010) Principles of Planetary Climate. Cambridge University Press, Cambridge, 652 pp.Google Scholar
Pinto, J. G., Reyers, M. (2017) Winde und Zyklonen. In: Brasseur, G., Jacob, D., Schuck-Zöller, S. (Eds.) Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und Perspektiven. Springer, Berlin, pp. 6775. [in German]Google Scholar
Pirazzoli, P. A., Tomasin, A. (2003) Recent near-surface wind changes in the central Mediterranean and Adriatic areas. International Journal of Climatology 23(8): 963973.Google Scholar
Politis, D. N., Romano, J. P. (1994) The stationary bootstrap. Journal of the American Statistical Association 89(428): 13031313.Google Scholar
Popper, K. R. (1959) The logic of scientific discovery. Basic Books, New York, 480 pp. [The original German version was published in 1934.]Google Scholar
Popper, K. R. (2004) Woran glaubt der Westen? (gestohlen vom Autor der “Offenen Gesellschaft”) [What does the West believe in? (stolen from the author of “The Open Society”)]. In: Auf der Suche nach einer besseren Welt: Vorträge und Aufsätze aus dreißig Jahren, 13th edition. Piper, Munich, pp. 231–253. [In German; the English translation of the book was published as “In Search of a Better World: Lectures and Essays from Thirty Years” in 1992 by Routledge.]Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1996) Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Second edition. Cambridge University Press, Cambridge, pp. 9351486.Google Scholar
Rahmstorf, S., Coumou, D. (2011) Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America 108(44): 1790517909. [Correction: 109(12): 4708]Google Scholar
Rappaport, E. N., Fernández-Partagás, J. J. (1997) History of the deadliest Atlantic tropical cyclones since the discovery of the New World. In: Diaz, H. F., Pulwarty, R. S. (Eds.) Hurricanes: Climate and Socioeconomic Impacts. Springer, Berlin, pp. 93108.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., van der Plicht, J. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 18691887.Google Scholar
Resnick, S. I. (2007) Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, 404 pp.Google Scholar
Röthlisberger, R., Bigler, M., Hutterli, M., Sommer, S., Stauffer, B., Junghans, H. G., Wagenbach, D. (2000) Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environmental Science & Technology 34(2): 338342.Google Scholar
Rubin, C. M., Horton, B. P., Sieh, K., Pilarczyk, J. E., Daly, P., Ismail, N., Parnell, A. C. (2017) Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nature Communications 8: 16019. [doi:10.1038/ncomms16019]Google Scholar
Russell, B. (1996) History of Western Philosophy. Second edition. Routledge, London, 842 pp. [originally published in 1961 by George Allen and Unwin]Google Scholar
Schiesser, H. H., Pfister, C., Bader, J. (1997) Winter storms in Switzerland north of the Alps 1864/1865–1993/1994. Theoretical and Applied Climatology 58(1–2): 119.Google Scholar
Schmidt, M. (2000) Hochwasser und Hochwasserschutz in Deutschland vor 1850 [Floods and Flood Protection in Germany before 1850]. Oldenbourg Industrieverlag, Munich, 330 pp. [in German]Google Scholar
Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66(3): 605610.Google Scholar
Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, A., Nakamura, J., Henderson, N. (2015) Causes of the 2011–14 California drought. Journal of Climate 28(18): 69977024.Google Scholar
Seibold, E., Berger, W. H. (1996) The Sea Floor: An Introduction to Marine Geology. Third edition. Springer, Berlin, 356 pp.Google Scholar
Sheffield, J., Wood, E. F., Roderick, M. L. (2012) Little change in global drought over the past 60 years. Nature 491(7424): 435438.Google Scholar
Silva, A. T. (2017) Introduction to nonstationary analysis and modeling of hydrologic variables. In: Naghettini, M. (Ed.) Fundamentals of Statistical Hydrology. Springer, Cham, Switzerland, pp. 537577.Google Scholar
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D. (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587): 484489.Google Scholar
Sinha, A., Stott, L., Berkelhammer, M., Cheng, H., Edwards, R. L., Buckley, B., Aldenderfer, M., Mudelsee, M. (2011) A global context for megadroughts in monsoon Asia during the past millennium. Quaternary Science Reviews 30(1–2): 4762.Google Scholar
Smits, A., Klein Tank, A. M. G., Können, G. P. (2005) Trends in storminess over the Netherlands, 1962–2002. International Journal of Climatology 25(10): 13311344.Google Scholar
Starkel, L. (2001) Extreme rainfalls and river floods in Europe during the last millennium. Geographia Polonica 74(2): 6979.Google Scholar
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) (2013) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp.Google Scholar
Swain, D. L., Langenbrunner, B., Neelin, J. D., Hall, A. (2018) Increasing precipitation volatility in twenty-first-century California. Nature Climate Change 8(5): 427433.Google Scholar
Taylor, R. E. (1987) Radiocarbon Dating: An Archaeological Perspective. Academic Press, Orlando, FL, 212 pp.Google Scholar
Ting, M., Kossin, J. P., Camargo, S. J., Li, C. (2019) Past and future hurricane intensity change along the U.S. East Coast. Scientific Reports 9(1): 7795. [doi:10.1038/s41598-019-44252-w]Google Scholar
Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA, 688 pp.Google Scholar
van der Ploeg, R. R., Schweigert, P. (2001) Elbe river flood peaks and postwar agricultural land use in East Germany. Naturwissenschaften 88(12): 522525.Google Scholar
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., Zhang, T. (2013) Observations: Cryosphere. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 317382.Google Scholar
Vautard, R., van Oldenborgh, G. J., Otto, F. E. L., Yiou, P., de Vries, H., van Meijgaard, E., Stepek, A., Soubeyroux, J.-M., Philip, S., Kew, S. F., Costella, C., Singh, R., Tebaldi, C. (2019) Human influence on European winter storms such as those of January 2018. Earth System Dynamics 10(2): 271286.Google Scholar
von Storch, H., Zwiers, F. W. (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484 pp.Google Scholar
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T.-c., Sobel, A., Sugi, M. (2016) Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7(1): 6589.Google Scholar
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., Li, X. (2005) The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308(5723): 854857.Google Scholar
Warmund, M. R., Guinan, P., Fernandez, G. (2008) Temperatures and cold damage to small fruit crops across the eastern United States associated with the April 2007 freeze. HortScience 43(6): 16431647.Google Scholar
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., Yasunari, T. (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 1445114510.Google Scholar
Weikinn, C. (1958) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 1 (Zeitwende–1500) [Source texts on the weather history in Europe from AD 0 to the year 1850: Hydrography, Part 1 (AD 0–1500)]. Akademie-Verlag, Berlin, 531 pp. [in German]Google Scholar
Weikinn, C. (1960) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 2 (1501–1600). Akademie-Verlag, Berlin, 486 pp. [in German]Google Scholar
Weikinn, C. (1961) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 3 (1601–1700). Akademie-Verlag, Berlin, 586 pp. [in German]Google Scholar
Weikinn, C. (1963) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 4 (1701–1750). Akademie-Verlag, Berlin, 381 pp. [in German]Google Scholar
Weikinn, C. (2000) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 5 (1751–1800). Gebrüder Borntraeger, Berlin, 674 pp. [in German]Google Scholar
Weikinn, C. (2002) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 6 (1801–1850). Gebrüder Borntraeger, Berlin, 728 pp. [in German]Google Scholar
Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R. P., Klotzbach, P. J., Pielke, R. Jr (2018) Normalized hurricane damage in the continental United States 1900–2017. Nature Sustainability 1(12): 808813.Google Scholar
Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., Lohmann, G. (2011) Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale. Journal of Geophysical Research 116(D15): D15109. [doi:10.1029/2011JD015681]Google Scholar
Wetter, O., Pfister, C., Werner, J. P., Zorita, E., Wagner, S., Seneviratne, S. I., Herget, J., Grünewald, U., Luterbacher, J., Alcoforado, M.-J., Barriendos, M., Bieber, U., Brázdil, R., Burmeister, K. H., Camenisch, C., Contino, A., Dobrovolný, P., Glaser, R., Himmelsbach, I., Kiss, A., Kotyza, O., Labbé, T., Limanówka, D., Litzenburger, L., Nordli, Ø., Pribyl, K., Retsö, D., Riemann, D., Rohr, C., Siegfried, W., Söderberg, J., Spring, J.-L. (2014) The year-long unprecedented European heat and drought of 1540 – a worst case. Climatic Change 125(3–4): 349363.Google Scholar
Wheatley, J. J., Blackwell, P. G., Abram, N. J., McConnell, J. R., Thomas, E. R., Wolff, E. W. (2012) Automated ice-core layer-counting with strong univariate signals. Climate of the Past 8(6): 18691879.Google Scholar
Wilhelm, B., Ballestero Cánovas, J. A., Macdonald, N., Toonen, W. H. J., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., Wetter, O. (2019) Interpreting historical, botanical, and geological evidence to aid preparations for future floods. Wiley Interdisciplinary Reviews: Water 6(1): e1318. [doi:10.1002/wat2.1318]Google Scholar
Winter, H. C., Tawn, J. A. (2016) Modelling heatwaves in central France: A case-study in extremal dependence. Applied Statistics 65(3): 345365.Google Scholar
Witze, A. (2018) The cruellest seas: Extreme floods will become more common as sea levels rise. Nature 555(7695): 156158. [not peer-reviewed]Google Scholar
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Klein, Tank A., Peterson, T. C., Trewin, B., Zwiers, F. W. (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change 2(6): 851870.Google Scholar
Zhang, X., Hegerl, G., Zwiers, F. W., Kenyon, J. (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. Journal of Climate 18(11): 16411651.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×