Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T20:40:44.540Z Has data issue: false hasContentIssue false

7 - Analysis of Atmospheric Circulation Problems

Published online by Cambridge University Press:  03 February 2010

Hans von Storch
Affiliation:
Universität Hamburg
Francis W. Zwiers
Affiliation:
University of Victoria, British Columbia
Get access

Summary

Summary. In this chapter we present examples of hypothesis tests in the contexts of confirming, or validating, Atmospheric General Circulation Models (AGCMs) (Section 7.1, see also [1.2.7]) and the analysis of paired sensitivity experiments (Section 7.2, see also [1.2.7]). Similar applications in the literature include [105, 132, 134,135,161,393]. See also Frankignoul's review of the topic [130], and the recurrence analysis examples presented in Sections 6.9 and 6.10. An application of the Hotelling test is described in Section 7.3 and an example of the anthropogenic CO2 signal is discussed in Section 7.4.

Validating a General Circulation Model

The Problem. Climate models in general, and AGCMs specifically, are mathematical representations of the climate that are built from first principles. On short time scales they simulate the day-to-day variations in the weather, ideally in such a way that the statistics of the observed climate are reproduced when the model is run for a long period of time. A careful strategy is needed to determine, even partly, whether a model has achieved this goal. The problem is complex because, in principle, we would need to compare the statistics of a state vector that characterizes all aspects of the thermo- and hydrodynamics of the atmosphere. The statistics should include time averaged fields of various variables at various levels, and temporal and spatial cross-covariances of different variables on different scales.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×