Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:45:25.287Z Has data issue: false hasContentIssue false

15 - Superconductivity at High Pressure

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Room temperature superconductivity (RTSC) is one the most challenging and longstanding problems in solid-state physics. The Bardeen–Cooper–Schrieffer (BCS) theory (1956) explained superconductivity but could not predict high critical temperatures (Tc). Extension of the BCS theory allowed RTSC in principle; however, estimations for realistic materials gave low Tc, with the only exception being metallic hydrogen. Therefore, conventional superconductors were not considered potential RTSCs. This tendency strengthened after the experimental discovery of superconductivity in cuprates with very high Tc, up to 133 K. Later, other families of nonconventional superconductivity appeared, notably, iron-based superconductors with Tc reaching 100 K. However, the mechanism of superconductivity in these materials is still not understood, and there has been no progress for many years in increasing Tc. Unexpectedly, conventional superconductors recently showed a clear prospect to be the first RTSCs: Tc = 203 K was discovered in H3S, and then Tc = 250 K in LaH10. This breakthrough resulted from a combination of factors, including the general idea to consider hydrogen-dominant materials, the appearance of ab initio predictions of structures for searching new materials, and advances in synthesis and characterization of new superconductors at megabar pressures. There is a clear prospect to achieve higher Tc in other binary or ternary hydrides. At ambient pressures, there is also a distinct possibility for substantial superconductivity, likely in materials with strong covalent bonding.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. B., Dynes, R. C. (1975). Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B, 12, 905922.Google Scholar
Ashcroft, N. W. (1968). Metallic hydrogen: a high-temperature superconductor? Physical Review Letters, 21, 17481750.Google Scholar
Ashcroft, N. W. (2004). Hydrogen dominant metallic alloys: high temperature superconductors? Physical Review Letters, 92, 187002.Google Scholar
Bardeen, J., Cooper, L. N., Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review. 108, 11751204.Google Scholar
Bednorz, J. G., Mueller, K. A. (1986). Possible high T superconductivity in the Ba– La–Cu–0 system. Z. Phys. B – Condensed Matter, 64, 189193.CrossRefGoogle Scholar
Bekaert, J., Petrov, M., Aperis, A., Oppeneer, P. M., Milošević, M. V. (2019). Hydrogen-induced high-temperature superconductivity in two-dimensional materials: the example of hydrogenated monolayer MgB2. Physical Review Letters, 123, 077001.Google Scholar
Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I., Mehl, M. J. (2015). What superconducts in sulfur hydrides under pressure and why. Physical Review B, 91, 060511(R).Google Scholar
Bhaumik, A., Sachan, R., Gupta, S., Narayan, J. (2017). Discovery of high-temperature superconductivity (Tc = 55 K) in B‑doped Q‑carbon. ACS Nano, 11, 1191511922.Google Scholar
Bustarret, E., Marcenat, C., Achatz, P., et al. (2006). Superconductivity in doped cubic silicon. Nature, 444, 465.Google Scholar
Capitani, F., Langerome, B., Brubach, J.-B., et al. (2017). Spectroscopy of H3S: evidence of a new energy scale for superconductivity. Nature Physics, 13, 859863.Google Scholar
Cohen, M. L., Anderson, P. W. (1972). Comments on the maximum superconducting transition temperature. AIP Conference Proceedings, 4, 1727.CrossRefGoogle Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A. (2014). Conventional superconductivity at 190 K at high pressures. arXiv:1412.0460.Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A. (2015a). Superconductivity above 100 K in PH3 at high pressures. arXiv:1508.06224.Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., Shylin, S. I. (2015b). Conventional superconductivity at 203 K at high pressures. Nature, 525, 73.Google Scholar
Drozdov, A. P., Kong, P. P., Minkov, V. S., et al. (2019). Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528.Google Scholar
Duan, D., Liu, Y., Tian, F., et al. (2014). Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Scientific Reports, 4, 6968.Google Scholar
Einaga, M., Sakata, M., Ishikawa, T., et al. (2016). Crystal structure of 200 K-superconducting phase of sulfur hydride. Nature Physics, 12, 835838.Google Scholar
Ekimov, E. A., Sidorov, V. A., Bauer, E. D., et al. (2004). Superconductivity in diamond. Nature, 428, 542.CrossRefGoogle ScholarPubMed
Eliashberg, G. M. (1960). Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics, JETP, 11(3), 696702.Google Scholar
Eremets, M. I., Drozdov, A. P., Kong, P. P., Wang, H. (2019). Semimetallic molecular hydrogen at pressure above 350 GPa. Nature Physics, 15, 1246.Google Scholar
Eremets, M. I., Gregoryanz, E., Mao, H. K., Hemley, R. J., Mulders, N., Zimmerman, N. (2000). Electrical conductivity of Xe at megabar pressures. Physical Review Letters, 85(13), 27972800.Google Scholar
Eremets, M. I., Hemley, R. J., Mao, H. K., Gregoryanz, E. (2001a). Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature, 411, 170174.CrossRefGoogle ScholarPubMed
Eremets, M. I., Struzhkin, V. V., Mao, H. K., Hemley, R. J. (2001b). Superconductivity in boron. Science, 293, 272274.Google Scholar
Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S., Yao, Y. (2008). Superconductivity in hydrogen dominant materials: silane. Science, 319, 15061509.Google Scholar
Flores-Livas, J. A., Amsler, M., Heil, C., et al. (2016). Superconductivity in metastable phases of phosphorus–hydride compounds under high pressure. Physical Review B, 93, 020508(R).Google Scholar
Flores-Livas, J. A., Boeri, L., Sanna, A., Profeta, G., Arita, R., Eremets, M. (2020). A perspective on conventional high-temperature superconductors at high pressure: methods and materials. Physics Reports, 856, 178.Google Scholar
Flores-Livas, J. A., Graužinyte, M., Boeri, L., Profeta, G., Sanna, A. (2018). Superconductivity in doped polyethylene at high pressure. European Physics Journal B, 91, 176.Google Scholar
Flores-Livas, J. A., Sanna, A., Graužinytė, M., Davydov, A., Goedecker, S., Marques, M. A. L. (2017). Emergence of superconductivity in doped H2O ice at high pressure. Scientific Reports, 7, 6825.CrossRefGoogle ScholarPubMed
Gao, G., Oganov, A. R., Ma, Y., et al. (2010). Dissociation of methane under high pressure. Journal of Chemical Physics. 133, 144508.CrossRefGoogle ScholarPubMed
Gao, L., Xue, Y. Y., Chen, F., et al. (1994). Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures. Physical Review B, 50, 42604263.Google Scholar
Gavaler, J. R. (1973). Superconductivity in Nb-Ge films above 22 K. Applied Physics Letters, 23, 480.Google Scholar
Ge, Y., Zhang, F., Yao, Y. (2016). First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Physical Review B, 93, 224513.Google Scholar
Geballe, Z. M., Liu, H., Mishra, A. K., et al. (2018). Synthesis and stability of lanthanum superhydrides. Angewandte Chemie, International Edition, 57, 688.Google Scholar
Glass, C. W., Oganov, A. R., Hansen, N. (2006). USPEX – evolutionary crystal structure prediction. Computer Physics Communications, 175, 713720.Google Scholar
Goncharenko, I., Eremets, M. I., Hanfland, M., et al. (2008). Pressure-induced hydrogen-dominant metallic state in aluminum hydride. Physical Review Letters, 100, 045504.Google Scholar
Goncharov, A. F., Prakapenka, V. B., Struzhkin, V. V., Kantor, I., Rivers, M. L., Dalton, D. A. (2010). X-ray diffraction in the pulsed laser heated diamond anvil cell. Review of Scientific Instruments, 81, 113902.CrossRefGoogle ScholarPubMed
Gor’kov, L. P., Kresin, V. Z. (2018). High pressure and road to room temperature superconductivity. Review of Modern Physics, 90, 011001.Google Scholar
Hirsch, J. E. (2009). BCS theory of superconductivity: it is time to question its validity. Physica Scripta, 80, 03570.Google Scholar
Kamihara, Y., Hiramatsu, H., Hirano, M., et al. (2006). Iron-based layered superconductor: LaFeP. Journal of the American Chemical Society, 128, 1001210013.CrossRefGoogle Scholar
Kong, P. P., Minkov, V. S., Kuzovnikov, M. A., et al. (2021). Superconductivity up to 243 K in yttrium hydrides under high pressure. Nature Communications, 12, 5075.Google Scholar
Li, Y., Hao, J., Li, Y., Ma, Y. (2014). The metallization and superconductivity of dense hydrogen sulfide. Journal of Chemical Physics, 140, 174712.CrossRefGoogle ScholarPubMed
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W., Hemley, R. J. (2017). Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. PNAS, 114, 6990.CrossRefGoogle Scholar
Loubeyre, P., Occelli, F., Dumas, P. (2020). Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 577, 631.Google Scholar
Lu, S., Liu, H., Naumov, I. I., et al. (2016). Superconductivity in dense carbon-based materials. Physical Review B, 93, 104509.Google Scholar
Ma, Y., Eremets, M., Oganov, A. R., et al. (2009). Transparent dense sodium. Nature, 458, 182185.Google Scholar
Mao, H. (1978). High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science, 200, 11451147.Google Scholar
Mao, H. K., Hemley, R. J. (1994). Ultrahigh pressure transitions in solid hydrogen. Review of Modern Physics, 66, 671692.Google Scholar
McMahon, J. M., Morales, M. A., Pierleoni, C., Ceperley, D. M. (2012). The properties of hydrogen and helium under extreme conditions. Review of Modern Physics, 84, 16071653.Google Scholar
Medvedev, S., McQueen, T. M., Troyan, I. A., et al. (2009). Electronic and magnetic phase diagram of β–Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Materials, 8, 630633.Google Scholar
Migdal, A. B. (1958). Interaction between electrons and lattice vibrations in a normal metal. Soviet Physics, JETP, 7, 996.Google Scholar
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. Nature, 410, 63.Google Scholar
Nicol, E. J., Carbotte, J. P. (2015). Comparison of pressurized sulfur hydride with conventional superconductors. Physical Review B, 91, 220507(R).Google Scholar
Peng, F., Sun, Y., Pickard, C. J., Needs, R. J., Wu, Q., Ma, Y. (2017). Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Physical Review Letters, 119, 107001.Google Scholar
Pickard, C. J., Errea, I., Eremets, M. I. (2020). Superconducting hydrides under pressure. Annual Review of Condensed Matter Physics, 11, 5776.Google Scholar
Pickard, C. J., Needs, R. J. (2006). High-pressure phases of silane. Physical Review Letters, 97, 045504.Google Scholar
Pickard, C. J., Needs, R. J. (2007). Metallization of aluminum hydride at high pressures: a first-principles study. Physical Review Letters. 76, 144114.Google Scholar
Pickard, C. J., Needs, R. J. (2011). Ab initio random structure searching. Journal of Physics: Condensed Matter, 23, 053201Google Scholar
Pickett, W., Eremets, M. I. (2020). The quest for room-temperature superconductivity in hydrides. Physics Today, 72(5), 5258.CrossRefGoogle Scholar
Pizzochero, M., Leenaerts, O., Partoens, B., Martinazzo, R., Peeters, F. M. (2015). Hydrogen adsorption on nitrogen and boron doped graphene. Journal of Physics: Condensed Matter, 27, 425502.Google Scholar
Quan, Y., Pickett, W. E. (2016). Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Physical Review B, 93, 04526.Google Scholar
Sanna, A., Davydov, A., Dewhurst, J. K., Sharma, S., Flores-Livas, J. A. (2018). Superconductivity in hydrogenated carbon nanostructures. European Physics Journal B, 91, 177.Google Scholar
Schilling, A., Cantoni, M., Guo, J. D., Ott, H. R. (1993). Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature, 363, 5658.Google Scholar
Schilling, J. S. (2007). Studies in superconductivity at extreme pressures. Physica C, 460462, 182185.Google Scholar
Si, Q., Yu, R., Abrahams, E. (2016). High-temperature superconductivity in iron pnictides and chalcogenides. Nature Reviews Materials, 1, 16017.Google Scholar
Snider, E., Dasenbrock-Gammon, N., McBride, R., et al. (2020). Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373377.Google Scholar
Somayazulu, M., Ahart, M., Mishra, A. K., et al. (2019). Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Physical Review Letters, 122, 027001.Google Scholar
Struzhkin, V. V., Eremets, M. I., Gan, W., Mao, H. K., Hemley, R. J. (2002). Superconductivity in dense lithium. Science, 298, 1213-1215.Google Scholar
Struzhkin, V. V., Hemley, R., Mao, H. K., Timofeev, Y. A. (1997). Superconductivity at 10–17 K in compressed sulphur. Nature, 390, 382.Google Scholar
Sun, Y., Lv, J., Xie, Y., Liu, H., Ma, Y. (2019). Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Physical Review Letters, 123, 097001.Google Scholar
Tanigaki, K., Ebbesen, T. W., Saito, S., et al. (1991). Superconductivity at 33 K in CsxRbyC60. Nature, 352 222223.Google Scholar
Timofeev, Y. A. (1992). Detection of superconductivity in high-pressure diamond anvil cell by magnetic susceptibility technique. Prib. Tekh. Eksper., 5, 186189.Google Scholar
Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. i., Ma, Y. (2012). Superconductive sodalite-like clathrate calcium hydride at high pressures. PNAS, 109, 64636466.CrossRefGoogle ScholarPubMed
Wigner, E. and Huntington, H. B. (1935). “On the possibility of a metallic modification of hydrogen.” J. Chem. Phys. 3: 764-770.Google Scholar
Xie, H., et al. (2020). Hydrogen “penta-graphene-like” structure stabilized via hafnium: a high-temperature conventional superconductor. arXiv:2001.04076.Google Scholar
Wang, Y., Lv, J., Zhu, L., Ma, Y. (2010). Crystal structure prediction via particle-swarm optimization. Physical Review B, 82, 094116.Google Scholar
Zipoli, F., Bernasconi, M., Benedek, G. (2006). Electron–phonon coupling in halogen-doped carbon clathrates from first principles. Physical Review B, 74, 205408.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×