Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T19:47:47.208Z Has data issue: false hasContentIssue false

13 - Investigation of Chemical Interaction and Melting Using Laser-Heated Diamond Anvil Cell

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

The combination of double-sided laser heating in the diamond anvil cell and detailed chemical analysis of the recovered samples is a promising approach to explore the chemistry of the Earth’s deep interior from the lower mantle to the core. Routine recovery of laser-heated samples coupled with chemical and textural characterization at the submicron scale is the key to expand knowledge of chemical interactions and melting at extreme conditions, particularly in complex systems. Recent technical developments have allowed us to investigate element partitioning and melting relations at pressures approaching the Earth’s inner-core boundary. In this chapter, we review the techniques used for recovering tiny laser-heated samples and analyzing their chemical compositions and quenched textures, while highlighting key experiments that address silicate–metal element partitioning during mantle–core differentiation, silicate melting relations with applications to early magma ocean crystallization and deep mantle melting, and melting relations in iron-alloy systems relevant to the core. The results have drastically expanded our understanding of element redistribution at deep chemical boundaries and the chemical evolution of the deep mantle and the inner core. Finally, we emphasize the need for standardized protocols to obtain consistent, reproducible results and streamlined procedures to promote good practice and increase productivity. A broad collaboration with a systematic approach would further advance the field of high-pressure geochemistry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×