Published online by Cambridge University Press: 06 January 2010
Abstract
The article explores the extended and strengthened role of state structure when statistical analysis is coupled with the optimisation of decisions. The LQG theory is of course well developed, with its explicit algorithms and complete formal duality of estimation and control. However, the path-integral formulation which is so natural for the state-structured case leads to an elegant formalism which is less well known. The risk-sensitive models give a mild but significant generalisation of the LQG case, with a complete theory and a special simplification in the state-structured case. The application of large-deviation methods, when these are applicable, leads to a direct but radical generalisation of the LQG theory.
State structure in time series analysis
Durbin and Koopman (2001) (and references quoted therein) have eloquently demonstrated the importance of the concept of state in time series analysis. If the underlying model has state structure then this greatly eases inference, but a central (and well-recognised) thesis of this paper is that it also eases decision-making. This enhanced role also requires an enhancement of the concept of state.
The simplest state-structured model is the first-order scalar linear autoregression
where the residuals (‘noise variables’) ∈ t are supposed NID(0, v). From this one obtains an immediate and simple evaluation of the quantity certainly required for inference: the likelihood based on the sample (x1, x2, …, xn).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.