Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-20T17:06:53.542Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 March 2019

Max Dickmann
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Niels Schwartz
Affiliation:
Universität Passau, Germany
Marcus Tressl
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
Spectral Spaces
, pp. 590 - 606
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AbJu94] Samson, Abramsky and Achim, Jung. Domain theory. In Handbook of logic in computer science, Vol. 3, p. 1–168. Oxford University Press, New York, 1994. 587Google Scholar
[ABR88] Carlos, Andradas, Ludwig, Brocker, and Jesus M., Ruiz. Minimal generation of basic open semianalytic sets. Invent. Math., 92(2):409–430, 1988. 536
[ABR96] Carlos, Andradas, Ludwig, Brocker, and Jesus M., Ruiz. Constructible sets in real geometry, volume 33 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1996. 521, 528, 535, 536, 538Google Scholar
[AGR85] Maria Emilia, Alonso, Jose M., Gamboa, and Jesus Maria, Ruiz. On orderings in real surfaces. J. Pure Appl. Algebra, 36(1):1–14, 1985. 535Google Scholar
[AHS90] Jiři, Adamek, Horst, Herrlich, and George E., Strecker. Abstract and concrete categories. The joy of cats. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, 1990. A Wiley-Interscience Publication. 13, 82, 100, 328, 376, 377, 383, 403Google Scholar
[AHS04] Jiři, Adamek, Horst, Herrlich, and George E., Strecker. Abstract and concrete categories. The joy of cats. Improved and corrected online version of [AHS90], 2004. 383, 409
[AlAn87] Maria Emilia, Alonso and Carlos, Andradas. Real spectra of complete local rings. Manuscripta Math., 58(1–2):155–177, 1987. 535Google Scholar
[AMJK04] Mauricio, Alvarez-Manilla, Achim, Jung, and Klaus, Keimel. The probabilistic powerdomain for stably compact spaces. Theoret. Comput. Sci., 328(3):221–244, 2004. 47
[AnFe88] Marlow, Anderson and Todd, Feil. Lattice-ordered groups. An introduction. Reidel Texts in the Mathematical Sciences. D. Reidel Publishing Co., Dordrecht, 1988. 531Google Scholar
[AnRu95] Carlos, Andradas and Jesus M., Ruiz. Algebraic and analytic geometry of fans. Mem. Amer. Math. Soc., 115(553):vi+117, 1995. 536Google Scholar
[AtMa69] Michael F., Atiyah and Ian G., Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, MA, 1969. xi, 67, 418, 421, 443, 451, 452, 453Google Scholar
[AuTh62] Charles E., Aull and Wolfgang J., Thron. Separation axioms between T0 and T1. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., 24:26–37, 1962. 135Google Scholar
[BaDw74] Raymond, Balbes and Philip, Dwinger. Distributive lattices. University of Missouri Press, Columbia, MO, 1974. 98, 269, 302, 587Google Scholar
[BaGr71] Raymond, Balbes and George, Gratzer. Injective and projective Stone algebras. Duke Math. J., 38:339–347, 1971. 414Google Scholar
[BaHa90] Richard N., Ball and Anthony W., Hager. Epicomplete Archimedean lgroups and vector lattices. Trans. Amer. Math. Soc., 322(2):459–478, 1990. 412Google Scholar
[BaHo70] Raymond, Balbes and Alfred, Horn. Injective and projective Heyting algebras. Trans. Amer. Math. Soc., 148:549–559, 1970. 414Google Scholar
[Bal67] Raymond, Balbes. Projective and injective distributive lattices. Pacific J. Math., 21:405–420, 1967. 414, 415Google Scholar
[Ban71] Bernhard, Banaschewski. Projective covers in categories of topological spaces and topological algebras. In General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), p. 63–91. Academia, Prague, 1971. 414Google Scholar
[Ban80] Bernhard, Banaschewski. The duality of distributive continuous lattices. Canad. J. Math., 32(2):385–394, 1980. 326
[Ban81] Bernhard, Banaschewski. Coherent frames. Lecture Notes in Mathematics. Proceedings of the Conference on Topological and Categorical Aspects of Continuous Lattices (Workshop IV) held at the University of Bremen, Bremen, November 9–11, 1979. Springer-Verlag, Berlin, Vol. 871, pp 282– 283, 1981. 209, 299, 325, 327, 404, 405Google Scholar
[Ban96] Bernhard, Banaschewski. Radical ideals and coherent frames. Comment. Math. Univ. Carolin., 37(2):349–370, 1996. 469
[Bar68] Simson, Baron. Note on epi in T0. Canad. Math. Bull., 11:503–504, 1968. 138, 148, 394Google Scholar
[BBGK10] Guram, Bezhanishvili, Nick, Bezhanishvili, David, Gabelaia, and Alexander Kurz. Bitopological duality for distributive lattices and Heyting algebras. Math. Structures Comput. Sci., 20(3):359–393, 2010. 270
[BBMV12] Lev, Beklemishev, Guram, Bezhanishvili, Daniele, Mundici, and Yde, Venema. Foreword [Special issue dedicated to the memory of Leo Esakia]. Studia Logica, 100(1–2):1–7, 2012. 278Google Scholar
[BCR87] Jacek, Bochnak, Michel, Coste, and Marie-Francoise, Roy. Geometrie algebrique reelle, volume 12 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer- Verlag, Berlin, 1987. xviGoogle Scholar
[BCR98] Jacek, Bochnak, Michel, Coste, and Marie-Francoise, Roy. Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated from the1987 French original, revised by the authors. 274, 485, 489, 492, 493, 498, 501, 518, 520, 526, 527Google Scholar
[BDNS94] Lawrence P., Belluce, Antonio Di Nola, and Salvatore Sessa. The prime spectrum of an MV-algebra. Math. Logic Quart., 40(3):331–346, 1994. Xvi
[Bel87] Luc, Belair. Spectres p-adiques en rang fini. C. R. Acad. Sci. Paris Ser. I Math., 305(1):1–4, 1987. 572
[Bel90] Luc, Belair. Spectre p-adique: aspects topologiques et geometriques. In Seminaire sur les Structures Algebriques Ordonnees, Vol. II, volume 33 of Publ. Math. Univ. Paris VII, p. 151–163. Universite Paris VII, Paris, 1990. 572Google Scholar
[Bel97] Lawrence P., Belluce. Spectral closure for non-commutative rings. Comm. Algebra, 25(5):1513–1536, 1997. 77
[BEPS03] Ezzeddine, Bouacida, Othman, Echi, Gabriel, Picavet, and Ezzeddine, Salhi. An extension theorem for sober spaces and the Goldman topology. Int. J. Math. Math. Sci., (51):3217–3239, 2003. 132, 135, 137, 138, 139Google Scholar
[Ber99] Ralph, Berr. Spectral spaces and first order theories. Seminaire Structures Algebriques Ordonnees (F., Delon, M., Dickmann, D., Gondard, eds.), Universite Paris 7 (1999). 541, 571Google Scholar
[Bir33] Garrett, Birkhoff. On the combination of subalgebras. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 29, no. 04, pp 441–464, 1933. xiii, 78
[Bir48] Garrett, Birkhoff. Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, revised edition. American Mathematical Society, New York, 1948. 274Google Scholar
[Bir79] Garrett, Birkhoff. Lattice theory, volume 25 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, third edition, 1979. 98, 302Google Scholar
[BKW77] Alain, Bigard, Klaus, Keimel, and Samuel, Wolfenstein. Groupes et anneaux reticules. Lecture Notes in Mathematics, Vol. 608. Springer-Verlag, Berlin, 1977. xvi, 247, 290, 299, 531, 532Google Scholar
[Bly05] Thomas S., Blyth. Lattices and ordered algebraic structures. Universitext. Springer-Verlag, London, 2005. xiGoogle Scholar
[BMM02] Guram, Bezhanishvili, Ray, Mines, and Patrick J., Morandi. The Priestley separation axiom for scattered spaces. Order, 19(1):1–10, 2002. 181, 265
[BoMi58] Raoul, Bott and John, Milnor. On the parallelizability of the spheres. Bull. Amer. Math. Soc., 64:87–89, 1958. 521Google Scholar
[BoRu00] Robert, Bonnet and Matatyahu, Rubin. Onwell-generated Boolean algebras. Ann. Pure Appl. Logic, 105(1–3):1–50, 2000. 264Google Scholar
[BoRu06] Robert, Bonnet and Matatyahu, Rubin. Chains of well-generated Boolean algebras whose union is not well-generated. Israel J. Math., 154:141–155, 2006. 264Google Scholar
[Bou61] Nicolas, Bourbaki. Elements de mathematique. Fascicule XXVII. Algebre commutative. Chapitre 1: Modules plats. Chapitre 2: Localisation. Actualites Scientifiques et Industrielles, No.1290. Herman, Paris, 1961. xiv, 67, 70, 421Google Scholar
[Bou70] Nicolas, Bourbaki. Elements de mathematique. Algebre. Chapitres 1 a 3. Hermann, Paris, 1970. 421Google Scholar
[Bou71a] Nicolas, Bourbaki. Elements de mathematique. Fasc. XXVI. Groupes et algebres de Lie. Chapitre I: Algebres de Lie. Seconde edition. Actualites Scientifiques et Industrielles, No.1285. Hermann, Paris, 1971. 239, 240Google Scholar
[Bou71b] Nicolas, Bourbaki. Elements de mathematique. Topologie generale. Chapitres 1 a 4. Hermann, Paris, 1971. 2, 14, 52, 59, 65, 132, 148, 155, 168, 169, 177, 199, 202Google Scholar
[Bou98] Nicolas, Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, reprint of the 1989 English translation. 418, 435, 442, 443, 460, 558, 569Google Scholar
[Bou03] Nicolas, Bourbaki. Algebra II. Chapters 4–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2003. Translated from the 1981 French edition by P. M. Cohn and J. Howie, reprint of the 1990 English edition [Springer, Berlin; MR1080964 (91h:00003)]. 440Google Scholar
[Bra74] Ola, Bratteli. Structure spaces of approximately finite-dimensional C- algebras. J. Funct. Anal., 16:192–204, 1974. 77Google Scholar
[BrEl78] Ola, Bratteli and George A., Elliott. Structure spaces of approximately finite-dimensional C-algebras. II. J. Funct. Anal., 30(1):74–82, 1978. 77
[Bro82] Ludwig, Brocker. Real spectra and distributions of signatures. In Real algebraic geometry and quadratic forms (Rennes, 1981), volume 959 of Lecture Notes in Mathematics, p. 249–272. Springer, Berlin, 1982. 526Google Scholar
[Bro94] Ludwig, Brocker. Abstract real spectra. Seminaire Structures Algebriques Ordonnees 1992–1993 (F., Delon, M., Dickmann, D., Gondard, eds.), Universite Paris 7 (1994), 4 pp., 1994. 538Google Scholar
[BrSc86] Ludwig, Brocker and Johann-Heinrich, Schinke. On the L-adic spectrum, volume 40 of Schriftenreihe des Mathematischen Instituts der Universitat Munster, 2. Serie [Series of the Mathematical Institute of the University of Munster, Series 2]. Universitat Munster, Mathematisches Institut, Munster, 1986. 572Google Scholar
[Bru62] Gunter, Bruns. Darstellungen und Erweiterungen geordneter Mengen. II. J. Reine Angew. Math., 210:1–23, 1962. 135Google Scholar
[BYaPo07] Itai Ben, Yaacov and Bruno, Poizat. Fondements de la logique positive. J. Symbolic Logic, 72(4):1141–1162, 2007. 541
[CaCo83] Michel, Carral and Michel, Coste. Normal spectral spaces and their dimensions. J. Pure Appl. Algebra, 30(3):227–235, 1983. 279
[ChKe90] Chen Chung, Chang and H. Jerome, Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990. 519Google Scholar
[Cie97] Krzysztof, Ciesielski. Set theory for the working mathematician, volume 39 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. 40, 114, 583Google Scholar
[ClDa98] David M., Clark and Brian A., Davey. Natural dualities for the working algebraist, volume 57 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1998. 98Google Scholar
[CoCo79] Marie-Francoise Coste and Michel Coste. Topologies for real algebraic geometry. In Topos theoretic methods in geometry, volume 30 of Various Publication Series, p. 37–100. Aarhus University, Aarhus, 1979. 487
[CoCoR81] Michel, Coste and Marie-Francoise Coste-Roy. Le topos etale reel d'un anneau. Cahiers Topologie Geom. Differentielle, 22(1):19–24, 1981. Third Colloquium on Categories (Amiens, 1980), Part II. 487
[Coh72] Paul M., Cohn. Skew fields of fractions, and the prime spectrum of a general ring. In Lectures on rings and modules (Tulane University Ring and Operator Theory Year, 1970–1971, Vol. I), p. 1–71. Lecture Notes in Mathematics, Vol. 246. Springer, Berlin, 1972. 77Google Scholar
[Coh79] Paul M., Cohn. The affine scheme of a general ring. In Applications of sheaves (Proc. Res. Symposium Applied Sheaf Theory to Logic, Algebra and Analysis, University of Durham, Durham, 1977), volume 753 of Lecture Notes in Mathematics, p. 197–211. Springer, Berlin, 1979. 77Google Scholar
[Coh81] Paul M., Cohn. Universal algebra. Volume 6 of Mathematics and its Applications. D. Reidel Publishing Co., Dordrecht, second edition, 1981. 76, 100, 150, 174, 424Google Scholar
[Coh95] Paul M., Cohn. Skew fields. Theory of general division rings. Volume 57 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. 77Google Scholar
[CoRCo80] Marie-Francoise, Coste-Roy and Michel, Coste. Le spectre etale reel d'un anneau est spatial. C. R. Acad. Sci. Paris Ser. A-B, 290(2):A91–A94, 1980. 487
[CoRo82] Michel, Coste and Marie-Francoise, Roy. La topologie du spectre reel. In Ordered fields and real algebraic geometry (San Francisco, CA, 1981), volume 8 of Contemporary Mathematics, p. 27–59. American Mathematical Society, Providence, RI, 1982. xvi, 71, 487, 512, 515, 528Google Scholar
[Cra74] Thomas C., Craven. The topological space of orderings of a rational function field. Duke Math. J., 41:339–347, 1974. 491Google Scholar
[CT82] Jean-Louis, Colliot-Thelene. Variantes du Nullstellensatz reel et anneaux formellement reels. In Real algebraic geometry and quadratic forms (Rennes, 1981), volume 959 of Lecture Notes in Math., pages 98–108. Springer, Berlin, 1982. 496Google Scholar
[DaEa73] George B., Dantzig and B. Curtis, Eaves. Fourier–Motzkin elimination and its dual. J. Combinatorial Theory Ser. A, 14:288–297, 1973. 274Google Scholar
[DaJu10] Luck, Darniere and Markus, Junker. Codimension and pseudometric in co-Heyting algebras. Algebra Universalis, 64(3–4):251–282, 2010. 270Google Scholar
[DaPr02] Brian A., Davey and Hilary A., Priestley. Introduction to lattices and order. Cambridge University Press, New York, second edition, 2002. 78, 98, 302Google Scholar
[Dar95] Michael R., Darnel. Theory of lattice-ordered groups, volume 187 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York, 1995. 531Google Scholar
[DaWo96] H. Garth, Dales and W. Hugh, Woodin. Super-real fields. Totally ordered fields with additional structure. Volume 14 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. 533, 534Google Scholar
[DeMa94] Charles N., Delzell and James J., Madden. A completely normal spectral space that is not a real spectrum. J. Algebra, 169(1):71–77, 1994. 290, 533, 538
[DFP81] David E., Dobbs, Marco, Fontana, and Ira J., Papick. On certain distinguished spectral sets. Ann. Mat. Pura Appl. (4), 128:227–240, 1981. 250, 258, 408, 409Google Scholar
[DGL00] Max, Dickmann, Daniel, Gluschankof, and Francois Lucas. The order structure of the real spectrumof commutative rings. J. Algebra, 229(1):175–204, 2000. 488, 533, 534
[Dic85] Max, Dickmann. Applications of model theory to real algebraic geometry. A survey. In Methods in mathematical logic (Caracas, 1983), volume 1130 of Lecture Notes in Mathathematics, p. 76–150. Springer, Berlin, 1985. 520Google Scholar
[Die84] Yves, Diers. Une construction universelle des spectres, topologies spectrales et faisceaux structuraux. Comm. Algebra, 12(17–18):2141–2183, 1984. xviGoogle Scholar
[DiPe04] Max, Dickmann and Alejandro, Petrovich. Real semigroups and abstract real spectra. I. In Algebraic and arithmetic theory of quadratic forms, volume 344 of Contemporary Mathematics, p. 99–119. American Mathematical Society, Providence, RI, 2004. 536, 537, 538, 539Google Scholar
[DiPe12] Max, Dickmann and Alejandro, Petrovich. Spectral real semigroups. Ann. Fac. Sci. Toulouse Math. (6), 21(2):359–412, 2012. 536, 538
[DiPe17a] Max, Dickmann and Alejandro, Petrovich. Fans in the theory of real semigroups I. Algebraic theory. Preprint, 2017. 538
[DiPe17b] Max, Dickmann and Alejandro, Petrovich. Fans in the theory of real semigroups II. Combinatorial theory. Preprint, 2017. 538
[DuPo10] Eduardo J., Dubuc and Yuri A., Poveda. Representation theory of MValgebras. Ann. Pure Appl. Logic, 161(8):1024–1046, 2010. xvi
[EcNa08] Othman, Echi and Mongi, Naimi. Primitive words and spectral spaces. New York J. Math., 14:719–731, 2008. 240Google Scholar
[Eda97] Abbas, Edalat. Domains for computation in mathematics, physics and exact real arithmetic. Bull. Symbolic Logic, 3(4):401–452, 1997. 240
[EiHa92] David, Eisenbud and Joe, Harris. Schemes. The language of modern algebraic geometry. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. 450
[Eis95] David, Eisenbud. Commutative algebra. With a view toward algebraic geometry. Volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. 452Google Scholar
[ELW79] Richard, Elman, Tsit Yuen, Lam, and Adrian R., Wadsworth. Orderings under field extensions. J. Reine Angew. Math., 306:7–27, 1979. 530Google Scholar
[Eng89] Ryszard, Engelking. General topology, volume 6 of Sigma Series in Pure Mathematics. HeldermannVerlag, Berlin, second edition, 1989. Translated from the Polish by the author. xi, 2, 14, 119, 122, 141, 165, 168, 169, 199, 261, 292, 344, 378, 400Google Scholar
[EnPr05] Antonio J., Engler and Alexander, Prestel. Valued fields. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. 506, 569Google Scholar
[Ern80] Marcel, Erne. Separation axioms for interval topologies. Proc. Amer. Math. Soc., 79(2):185–190, 1980. 589
[Ern09] Marcel, Erne. Infinite distributive laws versus local connectedness and compactness properties. Topology Appl., 156(12):2054–2069, 2009. 219
[Ers05] Yuri L., Ershov. Spectra of rings and lattices. Sibirsk. Mat. Zh., 46(2):361– 373, 2005. 467, 469
[Esa74] Leo, Esakia. Topological Kripke models. Dokl. Akad.Nauk SSSR, 214:298– 301, 1974. xvi, 278Google Scholar
[Esa85] Leo, Esakia. Algebry Geitinga. I. “Metsniereba”, Tbilisi, 1985. Teoriya dvoistvennosti. [Duality theory]. 278
[Esa04] Leo, Esakia. Intuitionistic logic and modality via topology. Provinces of logic determined. Ann. Pure Appl. Logic, 127(1–3):155–170, 2004. xviGoogle Scholar
[ETLS13] Christina, Eubanks-Turner, Melissa, Luckas, and A. Serpil, Saydam. Prime ideals in birational extensions of two-dimensional power series rings. Comm. Algebra, 41(2):703–735, 2013. 258
[Fle00] Isidore, Fleisher. Priestley's duality from Stone's. Adv. Appl. Math., 25(3):233–238, 2000. xvi, 27, 78
[Fon80] Marco, Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. (4), 123:331–355, 1980. 465Google Scholar
[FPT69] Jurgen, Flachsmeyer, Harry, Poppe, and Frank, Terpe, editors. Contributions to extension theory of topological structures, volume 1967 of Proceedings of the Symposium held in Berlin, August 14–19. VEB Deutscher Verlag der Wissenschaften, Berlin, 1969. 235Google Scholar
[FuNa42] Nenosuke, Funayama and Tadasi, Nakayama. On the distributivity of a lattice of lattice-congruences. Proc. Imp. Acad. Tokyo, 18:553–554, 1942. 100Google Scholar
[Gam88] Jose M., Gamboa. Un exemple d'ensemble constructible a adherence non constructible. C. R. Acad. Sci. Paris Ser. I Math., 306(14):617–619, 1988. 536
[Geh94] Mai, Gehrke. Uniquely representable posets. In Papers on general topology and applications (Flushing, NY, 1992), volume 728 of Annals of the New York Academy of Science, p. 32–40. New York Acadademy of Science, New York, 1994. 113Google Scholar
[GeHa01] Mai, Gehrke and John, Harding. Bounded lattice expansions. J. Algebra, 238(1):345–371, 2001. 302, 303, 304, 408
[GeŠi41] Israel, Gelfand and Georgiy, Šilov. Uber verschiedene Methoden der Einfuhrung der Topologie in die Menge der maximalen Ideale eines normierten Ringes. Rec. Math. [Mat. Sbornik] N. S., 9 (51):25–39, 1941. xivGoogle Scholar
[GHK+03] Gerhard, Gierz, Karl H., Hofmann, Klaus, Keimel, Jimmie D., Lawson, Michael, Mislove, and Dana S., Scott. Continuous lattices and domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2003. xi, 105, 205, 207, 209, 212, 213, 217, 218, 219, 220, 226, 234, 325, 587, 589Google Scholar
[GiJe60] Leonard, Gillman and Meyer, Jerison. Rings of continuous functions. The University Series in Higher Mathematics. D. Van Nostrand, Princeton, NJ, 1960. xiv, 14, 122, 123, 126, 128, 141, 165, 201, 203, 281, 285, 287, 288, 289, 292, 293, 306, 314, 332, 396, 398, 400, 415, 424, 506, 521, 527, 528Google Scholar
[Gil72] Robert, Gilmer. Multiplicative ideal theory. Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, No. 12. 70, 467Google Scholar
[Gil92] Robert, Gilmer. Multiplicative ideal theory, volume 90 of Queen's Papers in Pure and Applied Mathematics. Queen's University, Kingston, ON, 1992. Corrected reprint of the 1972 edition. 290, 467Google Scholar
[GL13] Jean, Goubault-Larrecq. Non-Hausdorff topology and domain theory, volume 22 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2013. [On the cover: Selected topics in point-set topology]. 26, 46, 47, 126, 213, 258Google Scholar
[Gle58] Andrew M., Gleason. Projective topological spaces. Illinois J. Math., 2:482–489, 1958. 399, 414Google Scholar
[GLS83] Gerhard, Gierz, Jimmie D., Lawson, and Albert R., Stralka. Quasicontinuous posets. Houston J. Math., 9(2):191–208, 1983. 218
[Gol51] Oscar, Goldman. Hilbert rings and the Hilbert Nullstellensatz. Math. Z., 54:136–140, 1951. 442Google Scholar
[GoMa10] Danielle, Gondard and Murray, Marshall. Real holomorphy rings and the complete real spectrum. Ann. Fac. Sci. Toulouse Math. (6), 19(Fascicule Special):57–74, 2010. 572
[Gra98] George, Gratzer. General lattice theory. Birkhauser Verlag, Basel, second edition, 1998. New appendices by the author with B. A., Davey, R., Freese, B., Ganter, M., Greferath, P., Jipsen, H. A., Priestley, H., Rose, E. T., Schmidt, S. E., Schmidt, F., Wehrung, and R., Wille. 75, 76, 78, 79, 83, 92, 99, 159, 303
[GrDi71] Alexandre, Grothendieck and Jean A., Dieudonne. Elements de geometrie algebrique. I. Springer, Berlin, 1971. 132, 138, 139, 371, 384, 385, 386, 387Google Scholar
[Gre13] Lorna, Gregory. Sobriety for the Ziegler spectrum of a Prufer domain. J. Pure Appl. Algebra, 217(10):1980–1993, 2013. 100
[Gro60] Alexander, Grothendieck. Elements de geometrie algebrique. I. Le langage des schemas. Inst. Hautes Etudes Sci. Publ. Math., (4):228, 1960. xivGoogle Scholar
[Gro64] Alexander, Grothendieck. Elements de geometrie algebrique. IV. Etude locale des schemas et des morphismes de schemas. I. Inst. Hautes Etudes Sci. Publ. Math., (20):259, 1964. 528Google Scholar
[Gro67] Alexander, Grothendieck. Elements de geometrie algebrique. IV. Etude locale des schemas et des morphismes de schemas IV. Inst. Hautes Etudes Sci. Publ. Math., (32):361, 1967. 462Google Scholar
[GrSc63] George, Gratzer and E. Tamas, Schmidt. Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged), 24:34–59, 1963. 557Google Scholar
[GY04] Jonathan L., Gross and Jay, Yellen, editors. Handbook of graph theory. Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 2004. 582Google Scholar
[HaJa85] Dan, Haran and Moshe, Jarden. The absolute Galois group of a pseudo real closed field. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(3):449–489, 1985. 531
[Hal63] Paul R., Halmos. Lectures on Boolean algebras. Van Nostrand Mathematical Studies, No. 1. D. Van Nostrand, Princeton, NJ, 1963. xi, 414
[Har77] Robin, Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 247, 249Google Scholar
[Har05] Egbert, Harzheim. Ordered sets, volume 7 of Advances in Mathematics (Springer). Springer, New York, 2005. xiGoogle Scholar
[Hei77] Raymond C., Heitmann. Prime ideal posets in Noetherian rings. Rocky Mountain J. Math., 7(4):667–673, 1977. 258
[HeKe13] Reinhold, Heckmann and Klaus, Keimel. Quasicontinuous domains and the Smyth powerdomain. In Proceedings of the Twenty-Ninth Conference on the Mathematical Foundations of Programming Semantics, MFPS XXIX, volume 298 of Electronic Notes in Theoretical Computer Science, p. 215– 232. Elsevier, Amsterdam, 2013. 217, 249Google Scholar
[Hen90] Melvin, Henriksen. Spaces of prime ideals. Rend. Circ. Mat. Palermo (2) Suppl., (24):127–144, 1990. Fourth Conference on Topology (Italian) (Sorrento, 1988). 400Google Scholar
[Her68] Horst, Herrlich. Topologische Reflexionen und Coreflexionen. Lecture Notes in Mathematics, No. 78. Springer-Verlag, Berlin, 1968. 371Google Scholar
[Her93] Ivo, Herzog. Elementary duality of modules. Trans. Amer. Math. Soc., 340(1):37–69, 1993. 100
[HeSt79] Horst, Herrlich and George E., Strecker. Category theory, volume 1 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, second edition, 1979. An introduction. xi, 13, 23, 57, 62, 82, 98, 100, 150, 202, 301, 314, 328, 370, 377, 383, 405, 408, 409, 410, 411Google Scholar
[Hoc67] Melvin, Hochster. Prime Ideal Structure in Commutative Rings. ProQuest LLC, Ann Arbor, MI, 1967. Thesis (PhD)–Princeton University. xv, 1
[Hoc69] Melvin, Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43–60, 1969. xv, 1, 16, 23, 27, 34, 49, 52, 57, 62, 63, 64, 67, 112, 119, 170, 393, 396, 398, 416, 469, 470, 473, 476, 477, 480, 481, 482, 483, 484Google Scholar
[Hoc71] Melvin, Hochster. The minimal prime spectrum of a commutative ring. Canad. J. Math., 23:749–758, 1971. 102, 118, 122, 123, 124, 125, 126Google Scholar
[Hod93] Wilfrid, Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. xi, 100, 519, 541, 542, 543, 547, 548, 558, 559, 560, 562, 564, 574, 575Google Scholar
[Hof75] Rudolf-Eberhard, Hoffmann. Charakterisierung nuchterner Raume. Manuscripta Math., 15:185–191, 1975. 384Google Scholar
[Hof77] Rudolf-Eberhard, Hoffmann. Irreducible filters and sober spaces. Manuscripta Math., 22(4):365–380, 1977. 384
[Hof79a] Rudolf-Eberhard, Hoffmann. Projective sober spaces. In Structure of topological categories (Proc. Conf., University of Bremen, Bremen, 1978), volume 18 of Math. -Arbeitspapiere, p. 109–153. University Bremen, Bremen, 1979. 384Google Scholar
[Hof79b] Rudolf-Eberhard, Hoffmann. On the sobrification remainder sX−X. Pacific J. Math., 83(1):145–156, 1979. 384Google Scholar
[Hof79c] Rudolf-Eberhard, Hoffmann. Sobrification of partially ordered sets. Semigroup Forum, 17(2):123–138, 1979. 384
[HoKe72] Karl H., Hofmann and Klaus, Keimel. A general character theory for partially ordered sets and lattices. American Mathematical Society, Providence, RI, 1972. Memoirs of the American Mathematical Society, No. 122. 78, 98, 384Google Scholar
[HoLa78] Karl H., Hofmann and Jimmie D., Lawson. The spectral theory of distributive continuous lattices. Trans. Amer. Math. Soc., 246:285–310, 1978. 326Google Scholar
[Hrb16] Michal, Hrbek. One-tilting classes and modules over commutative rings. J. Algebra, 462:1–22, 2016. 26Google Scholar
[HuKn94] Roland, Huber and Manfred, Knebusch. On valuation spectra. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemporary Mathematics, p. 167–206. American Mathematical Society, Providence, RI, 1994. xvi, 569, 570, 571Google Scholar
[Jac45] Nathan, Jacobson. A topology for the set of primitive ideals in an arbitrary ring. Proc. Nat. Acad. Sci. U. S. A., 31:333–338, 1945. xivGoogle Scholar
[Jac85] Nathan, Jacobson. Basic algebra. I. W. H. Freeman and Co., New York, second edition, 1985. xiGoogle Scholar
[Jac89] Nathan, Jacobson. Basic algebra. II. W. H. Freeman and Co., New York, second edition, 1989. xiGoogle Scholar
[Joh77] Peter T., Johnstone. Rings, fields, and spectra. J. Algebra, 49(1):238–260, 1977. 541
[Joh81] Peter T., Johnstone. Scott is not always sober. LectureNotes in Mathematics. Proceedings of the Conference on Topological and Categorical Aspects of Continuous Lattices (Workshop IV) held at the University of Bremen, Bremen, November 9–11, 1979. Springer-Verlag, Berlin, vol. 871, p 282– 283, 1981. 290Google Scholar
[Joh83] Peter T., Johnstone. The point of pointless topology. Bull. Amer. Math. Soc. (N.S.), 8(1):41–53, 1983. 47, 316
[Joh86] Peter T., Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986. Reprint of the 1982 edition. xv, xvi, 14, 280, 281, 299, 300, 301, 307, 314, 315, 316, 319, 322, 324, 382, 384, 387, 431, 588Google Scholar
[JuLa01] Markus, Junker and Daniel, Lascar. The indiscernible topology: a mock Zariski topology. J. Math. Log., 1(1):99–124, 2001. 541
[JuSu96] Achim, Jung and Philipp, Sunderhauf. On the duality of compact vs. open. In Papers on general topology and applications (Gorham, ME, 1995), volume 806 of Annals of the New York Academy of Science, p. 214–230. New York Acadademy of Science, New York, 1996. 99Google Scholar
[Kap70] Irving, Kaplansky. Commutative rings. Allyn & Bacon, Boston, MA, 1970. 111, 442, 446, 447Google Scholar
[Kei71] Klaus, Keimel. The representation of lattice-ordered groups and rings by sections in sheaves. In Lectures on the applications of sheaves to ring theory (Tulane University Ring and Operator Theory Year, 1970–1971, Vol. III), p. 1–98. Lecture Notes in Mathematics, Vol. 248. Springer, Berlin, 1971. xviGoogle Scholar
[Kei77] William F., Keigher. Prime differential ideals in differential rings. In Contributions to algebra (collection of papers dedicated to Ellis Kolchin), p. 239–249. Academic, Press, New York, 1977. xviGoogle Scholar
[Kel75] John L., Kelley. General topology. Springer-Verlag, New York, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27. xi, 2, 52, 112, 124, 141, 165, 168, 169, 199, 211, 263, 280, 281, 292, 433Google Scholar
[KlTr07] Igor, Klep and Marcus, Tressl. The prime spectrum and the extended prime spectrum of noncommutative rings. Algebr. Represent. Theory, 10(3):257– 270, 2007. 77
[Kne98] Manfred, Knebusch. On valuation spectra. In Singularities Symposium— Łojasiewicz 70 (Krakow, 1996; Warsaw, 1996), volume 44 of Banach Center Publication, p. 147–148. Polish Academy Science, Warsaw, 1998. 572Google Scholar
[KnSc89] Manfred, Knebusch and Claus, Scheiderer. Einfuhrung in die reelle Algebra, volume 63 of Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course]. Friedr. Vieweg & Sohn, Braunschweig, 1989. 496, 498, 501, 506, 511Google Scholar
[KnZh02] Manfred, Knebusch and Digen, Zhang. Manis valuations and Prufer extensions. I. A new chapter in commutative algebra. Volume 1791 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. 569Google Scholar
[KnZh05] Manfred, Knebusch and Digen, Zhang. Convexity, valuations and Prufer extensions in real algebra. Doc. Math., 10:1–109, 2005. 501Google Scholar
[Kop89] Sabine, Koppelberg. Handbook of Boolean algebras. Vol. 1. North-Holland, Amsterdam, 1989. Edited by J. Donald, Monk and Robert, Bonnet. xi, 13, 14, 56, 70, 78, 92, 98, 114, 115, 129, 130, 159, 244, 245, 288, 302, 306, 324, 414, 588Google Scholar
[Kop95] Ralph, Kopperman. Asymmetry and duality in topology. Topology Appl., 66(1):1–39, 1995. 211
[Kri64] Jean-Louis, Krivine. Anneaux, preordonnes. J. Analyse Math., 12:307–326, 1964. 503, 504
[Laf77] Jean Pierre, Lafon. Algebre commutative. Hermann, Paris, 1977. Langages geometrique et algebrique, Collection Enseignement des Sciences, No. 24. 469Google Scholar
[Lam84] Tsit-Yuen, Lam. An introduction to real algebra. Rocky Mountain J. Math., 14(4):767–814, 1984. Ordered fields and real algebraic geometry (Boulder, CO, 1983). 498
[Lan02] Serge, Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002. xi, 418, 515Google Scholar
[Law11] Jimmie, Lawson. Stably compact spaces. Math. Structures Comput. Sci., 21(1):125–169, 2011. 47, 99
[LeOh76] William J., Lewis and Jack, Ohm. The ordering of Spec R. Canad. J. Math., 28(4):820–835, 1976. 112, 290Google Scholar
[Lou83] Isabel, Loureiro. Prime spectrum of a tetravalent modal algebra. Notre Dame J. Formal Logic, 24(3):389–394, 1983. xvi
[Luc00] Thomas G., Lucas. Examples built with D+M, A+ XB[X] and other pullback constructions. In Non-Noetherian commutative ring theory, volume 520 of Mathematics and its Application, p. 341–368. Kluwer Academic, Dordrecht, 2000. 467Google Scholar
[Mac36] Holbrook M., MacNeille. Extensions of partially ordered sets. Proceedings of the National Academy of Sciences of the United States of America, vol. 22, pp 45–50, 1936. xiii, 78
[Mac39] Holbrook M., MacNeille. Extension of a distributive lattice to a Boolean ring. Bull. Amer. Math. Soc., 45(6):452–455, 1939. 79, 92
[Mac71] Saunders Mac, Lane. Categories for the working mathematician. Springer- Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5. xi, 61, 98, 151, 340, 358Google Scholar
[Mar76] George, Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis, 6(1):53–68, 1976. 587
[Mar96] Murray, Marshall. Spaces of orderings and abstract real spectra, volume 1636 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996. 489, 496, 538Google Scholar
[Mar08] Murray, Marshall. Positive polynomials and sums of squares, volume 146 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2008. 498Google Scholar
[Mat80] Hideyuki, Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings, Reading, MA, second edition, 1980. xi, 113, 152, 418, 443Google Scholar
[Mat89] Hideyuki, Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid. 462Google Scholar
[MB89a] J. Donald, Monk and Robert, Bonnet, editors. Handbook of Boolean algebras. Vol. 2. North-Holland, Amsterdam, 1989. 583Google Scholar
[MB89b] J. Donald, Monk and Robert, Bonnet, editors. Handbook of Boolean algebras. Vol. 3. North-Holland, Amsterdam, 1989. 167
[McTa44] John C. C., McKinsey and Alfred, Tarski. The algebra of topology. Ann. Math. (2), 45:141–191, 1944. xvi, 274Google Scholar
[McTa46] John C. C., McKinsey and Alfred, Tarski. On closed elements in closure algebras. Ann. Math. (2), 47:122–162, 1946. xvi, 274Google Scholar
[MeTr12] Timothy, Mellor and Marcus, Tressl. Non-axiomatizability of real spectra in L∞ƛ. Ann. Fac. Sci. Toulouse Math. (6), 21(2):343–358, 2012. 533
[Min00] Grigori, Mints. A short introduction to intuitionistic logic. The University Series in Mathematics. Kluwer Academic/Plenum Publishers, New York, 2000. 274Google Scholar
[ML98] Saunders Mac, Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. 370, 410Google Scholar
[Mos10] Joan, Moschovakis. Intuitionistic Logic. The Stanford Encyclopedia of Philosophy, 2010. 274
[Mum76] David, Mumford. Algebraic geometry. I. Springer-Verlag, Berlin, 1976. Complex projective varieties, Grundlehren der Mathematischen Wissenschaften, No. 221. 113Google Scholar
[Mum99] David, Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, expanded edition, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians, with contributions by Enrico Arbarello. 450Google Scholar
[Nac65] Leopoldo, Nachbin. Topology and order. Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, No. 4. D. Van Nostrand, Princeton, NJ, 1965. 46, 47, 265Google Scholar
[Nag62] Masayoshi, Nagata. Local rings. Interscience Tracts in Pure and Applied Mathematics, No. 13. Wiley Interscience, New York, 1962. 455Google Scholar
[PC83] Sibylla, Pries-Crampe. Angeordnete Strukturen. Gruppen, Korper, projektive Ebenen. [Groups, fields, projective planes]. Volume 98 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1983. 533Google Scholar
[Pic75] Gabriel, Picavet. Autour des ideaux premiers de Goldman d'un anneau commutatif. Ann. Sci. Univ. Clermont No. 57 Math., (11):73–90, 1975. 146, 442
[PiPu12] Jorge, Picado and Aleš, Pultr. Frames and locales. Topology without points. Frontiers in Mathematics. Birkhauser/Springer, Basel, 2012. 135, 207, 299, 300, 301, 314, 315, 588Google Scholar
[PiSr84] Anand, Pillay and Gabriel, Srour. Closed sets and chain conditions in stable theories. J. Symbolic Logic, 49(4):1350–1362, 1984. 541
[Plo08] Miroslav, Ploščica. Non-representable distributive semilattices. J. Pure Appl. Algebra, 212(11):2503–2512, 2008. 100
[Pre84] Alexander, Prestel. Lectures on formally real fields, volume 1093 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1984. 487, 491
[Pre07] Alexander, Prestel. Positive elimination in valued fields. Manuscripta Math., 123(1):95–103, 2007. 521
[Pre09] Mike, Prest. Purity, spectra and localisation, volume 121 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2009. 100Google Scholar
[Pri70] Hilary A., Priestley. Representation of distributive lattices by means of ordered stone spaces. Bull. London Math. Soc., 2:186–190, 1970. xvi, 1, 27, 30Google Scholar
[Pri72] Hilary A., Priestley. Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. (3), 24:507–530, 1972. 27Google Scholar
[Pri74] Hilary A., Priestley. Stone lattices: a topological approach. Fund. Math., 84(2):127–143, 1974. xvi
[Pri94a] Hilary A., Priestley. Intrinsic spectral topologies. In Papers on general topology and applications (Flushing, NY, 1992), volume 728 of Annals of the New York Academy of Science, p. 78–95. New York Academy of Science, New York, 1994. 205, 206, 211, 214, 218, 219, 220, 222, 225, 226Google Scholar
[Pri94b] Hilary A., Priestley. Spectral sets. J. Pure Appl. Algebra, 94(1):101–114, 1994. 30
[PrRo84] Alexander, Prestel and Peter, Roquette. Formally p-adic fields, volume 1050 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1984. 572Google Scholar
[PuSi88] Aleš, Pultr and Jiři, Sichler. Frames in Priestley's duality. Cahiers Topologie Geom. Differentielle Categ., 29(3):193–202, 1988. 299
[PuSi00] Aleš, Pultr and Jiři, Sichler. A Priestley view of spatialization of frames. Cahiers Topologie Geom. Differentielle Categ., 41(3):225–238, 2000. 299
[Rec77] Tomas, Recio. Una descomposicion de un conjunto semialgebraico. Actas V Reunion de Matematicos de Expresion Latina, Mallorca, 1977. 521
[Rib96] Paulo, Ribenboim. The new theory of ultrametric spaces. Period. Math. Hungar., 32(1-2):103–111, 1996. 125Google Scholar
[Rob86] Edmund, Robinson. The p-adic spectrum. J. Pure Appl. Algebra, 40(3):281–296, 1986. xvi, 572Google Scholar
[Rob90] Robert O., Robson. Model theory and spectra. J. Pure Appl. Algebra, 63(3):301–327, 1990. 541
[Rom08] Steven, Roman. Lattices and ordered sets. Springer, New York, 2008. 98, 302Google Scholar
[RuYa08] Wolfgang, Rump and Yi Chuan, Yang. Jaffard–Ohm correspondence and Hochster duality. Bull. Lond. Math. Soc., 40(2):263–273, 2008. 532
[Sam68] Pierre, Samuel, editor. Seminaire d'Algebre Commutative dirige par Pierre Samuel:1967/1968. Les epimorphismes d'anneaux. Secretariat mathe matique, Paris, 1968. 421Google Scholar
[SaWi05] A. Serpil, Saydam and Sylvia, Wiegand. Prime ideals in birational extensions of two-dimensional polynomial rings. J. Pure Appl. Algebra, 201(1–3):142–153, 2005. 258Google Scholar
[Sch80] Jurg, Schmid. Tensor products of distributive lattices and their Priestley duals. Acta Math. Acad. Sci. Hungar., 35(3–4):387–392, 1980. 101Google Scholar
[Sch86] Niels, Schwartz. Real closed rings. In Algebra and order (Luminy- Marseille, 1984), volume 14 of Research and Exposition in Mathematics, p. 175–194. Heldermann, Berlin, 1986. 535Google Scholar
[Sch89] Niels, Schwartz. The basic theory of real closed spaces. Mem. Amer. Math. Soc., 77(397):viii+122, 1989. 506, 535
[Sch90] Niels, Schwartz. Compactification of varieties. Ark. Mat., 28(2):333–370, 1990. 571
[Sch91] Konrad, Schmudgen. The K-moment problem for compact semi-algebraic sets. Math. Ann., 289(2):203–206, 1991. 498Google Scholar
[Sch97] Niels, Schwartz. Rings of continuous functions as real closed rings. In Ordered algebraic structures (Curacao, 1995), p. 277–313. Kluwer Academic, Dordrecht, 1997. 128, 506, 528, 535Google Scholar
[Sch11] Niels, Schwartz. Graph components of prime spectra. J. Algebra, 337:13– 49, 2011. 203Google Scholar
[Sch13a] Niels, Schwartz. Locales as spectral spaces. Algebra Universalis, 70(1):1– 42, 2013. 299, 307, 308, 309, 310, 312, 315, 316, 317, 318, 323, 325, 371, 375, 383, 403, 406
[Sch13b] Niels, Schwartz. Sheaves of abelian l-groups. Order, 30(2):497–526, 2013. 532Google Scholar
[Sch16] Niels, Schwartz. Strongly irreducible ideals and truncated valuations. Comm. Algebra, 44(3):1055–1087, 2016. 135
[Sch17a] Niels, Schwartz. Localic subspaces and colimits of localic spaces. Algebra universalis, pages 1–34, 2017. 300, 335
[Sch17b] Niels, Schwartz. Spectral reflections of topological spaces. Applied Categorical Structures, p. 1–27, 2017. 292, 300, 307, 371, 373, 375, 379, 381, 384, 385, 391, 394, 395, 396, 397, 398, 399, 401
[ScMa99] Niels, Schwartz and James J., Madden. Semi-algebraic function rings and reflectors of partially ordered rings, volume 1712 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. 535Google Scholar
[ScTr10] Niels, Schwartz and Marcus, Tressl. Elementary properties of minimal and maximal points in Zariski spectra. J. Algebra, 323(3):698–728, 2010. 128, 279
[Sha77] Rodney Y., Sharp. The dimension of the tensor product of two field extensions. Bull. London Math. Soc., 9(1):42–48, 1977. 462
[Sim80] Harold, Simmons. Reticulated rings. J. Algebra, 66(1):169–192, 1980. 429
[Sim82] Harold, Simmons. A couple of triples. Topology Appl., 13(2):201–223, 1982. 47
[Sku69] Ladislav, Skula. On a reflective subcategory of the category of all topological spaces. Trans. Amer. Math. Soc., 142:37–41, 1969. 138Google Scholar
[Ste98] Josef, Steinhofer. Ringkonstruktionen. Diplomarbeit. Universitat Regensburg, 1998. 473
[Ste10] Stuart A., Steinberg. Lattice-ordered rings and modules. Springer, New York, 2010. 531Google Scholar
[Sto36] Marshall H., Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40(1):37–111, 1936. xiii, 78
[Sto37a] Marshall H., Stone. Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc., 41(3):375–481, 1937. xiii, xiv
[Sto37b] Marshall H., Stone. Topological representations of distributive lattices and brouwerian logics. Casopis, Mat. Fys., Praha, 67, 1–25 (1937), 1937. xiii, 1, 78
[Sto40] Marshall H., Stone. A general theory of spectra. I. Proc. Nat. Acad. Sci. U. S. A., 26:280–283, 1940. xivGoogle Scholar
[Sto41] Marshall H., Stone. A general theory of spectra. II. Proc. Nat. Acad. Sci. U. S. A., 27:83–87, 1941. xivGoogle Scholar
[Str80] Albert, Stralka. A partially ordered space which is not a Priestley space. Semigroup Forum, 20(4):293–297, 1980. 266
[StSe70] Lynn A., Steen and J. Arthur, Seebach, Jr. Counterexamples in topology. Holt, Rinehart & Winston, New York, 1970. 45, 280Google Scholar
[StZi94] Ralph, Stocker and Heiner, Zieschang. Algebraische Topologie. Eine Einfuhrung. [An introduction]. Mathematische Leitfaden. [MathematicalTextbooks]. B. G., Teubner, Stuttgart, second edition, 1994. 344Google Scholar
[Tar31] Alfred, Tarski. Sur les ensembles definissables de nombres reels. I. Fundam. Math., 17:210–239, 1931. 520Google Scholar
[Tar38] Alfred, Tarski. Sentential calculus and topology. (Der Aussagenkalkul und die Topologie.) Fundam. Math., vol. 31, p. 103-134, 1938. 274
[Tar51] Alfred, Tarski. A decision method for elementary algebra and geometry. University of California Press, Berkeley, CA, second edition, 1951. 520Google Scholar
[Ted16] Christopher F., Tedd. Ring constructions on spectral spaces. PhD thesis, University of Manchester, 135 p, 2016. 258Google Scholar
[Tho97] Robert W., Thomason. The classification of triangulated subcategories. Compositio Math., 105(1):1–27, 1997. 26
[Thr62] Wolfgang J., Thron. Lattice-equivalence of topological spaces. Duke Math. J., 29:671–679, 1962. 135Google Scholar
[Tre96] Marcus, Tressl. Dedekind cuts in polynomially bounded, o-minimal expansions of real closed fields. PhD thesis, Universitat Regensburg, 1996. 541Google Scholar
[Tre98] Marcus, Tressl. The real spectrum of continuous definable functions in o-minimal structures. In Publ. Math. Univ. Paris VII, Seminaire sur les Structures Algebriques Ordonnees, Univerite Paris VII, vol. 68, p. 1–15.1998. 535Google Scholar
[Tre06] Marcus, Tressl. Computation of the z-radical in C(X). Adv. Geom., 6(1):139–175, 2006. 400Google Scholar
[Tre07] Marcus, Tressl. Super real closed rings. Fund. Math., 194(2):121–177, 2007. 506, 535
[Tre10] Marcus, Tressl. Bounded super real closed rings. In Logic Colloquium 2007, volume 35 of Lecture Notes in Logic, p. 220–237. Association for Symbolic Logic, La Jolla, CA, 2010. 506, 535Google Scholar
[vdD82] Lou van den Dries. Some applications of a model theoretic fact to (semi-) algebraic geometry. Nederl. Akad.Wetensch. Indag. Math., 44(4):397–401, 1982. 521
[vG12] Sam J., van Gool. Duality and canonical extensions for stably compact spaces. Topology Appl., 159(1):341–359, 2012. 13, 99
[vG14] Sam J., van Gool. On sheaves and duality. PhD thesis, Universiteit Nijmegen, 2014. 13, 99Google Scholar
[Vic89] Steven, Vickers. Topology via logic, volume 5 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1989. 240Google Scholar
[vM77] Jan van, Mill. Supercompactness and Wallman spaces. Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre Tracts, No. 85. 235
[vM84] Jan van, Mill. An introduction to βω. In Handbook of set-theoretic topology, p. 503–567. North-Holland, Amsterdam, 1984. 289Google Scholar
[Wal78] Robert J., Walker. Algebraic curves. Springer-Verlag, New York, 1978. Reprint of the1950 edition. 289Google Scholar
[Weh07] Friedrich, Wehrung. A solution of Dilworth's congruence lattice problem. Adv. Math., 216(2):610–625, 2007. 100
[Weh18] Friedrich, Wehrung. Spectral spaces of countable abelian lattice-ordered groups. Trans. Amer. Math. Soc., to appear, 2018. 533
[WiWi00] Roger, Wiegand and Sylvia, Wiegand. Prime ideals and decompositions of modules. In Non-Noetherian commutative ring theory, volume 520 of Mathematics and its Applications, p. 403–428. Kluwer Academic, Dordrecht, 2000. 258Google Scholar
[WiWi10] Roger, Wiegand and Sylvia, Wiegand. Prime ideals in Noetherian rings: a survey. In Ring and module theory, Trends in Mathematics, p. 175–193. Birkhauser/Springer, Basel, 2010. 258Google Scholar
[Yok09] Tomoo, Yokoyama. A poset with spectral Scott topology is a quasialgebraic domain. Order, 26(4):331–335, 2009. 219
[Zar47] Oscar, Zariski. A new proof of Hilbert's Nullstellensatz. Bull. Amer. Math. Soc., 53:362–368, 1947. 446Google Scholar
[Zar52] Oscar, Zariski. The fundamental ideas of abstract algebraic geometry. In Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 2, p. 77–89. American Mathematical Society, Providence, RI, 1952. XivGoogle Scholar
[ZaSa58] Oscar, Zariski and Pierre, Samuel. Commutative algebra, Volume I. The University Series in Higher Mathematics. D. Van Nostrand, Princeton, NJ, 1958. With the cooperation of I. S. Cohen. 418, 450, 451, 452
[Zha02] Digen, Zhang. The M-valuation spectrum of a commutative ring. Comm. Algebra, 30(6):2883–2896, 2002. 572Google Scholar
[Zie84] Martin, Ziegler. Model theory of modules. Ann. Pure Appl. Logic, 26(2):149–213, 1984. 100
[Zil10] Boris, Zilber. Zariski geometries. Geometry from the logician's point of view. Volume 360 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2010. 541Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Max Dickmann, Centre National de la Recherche Scientifique (CNRS), Paris, Niels Schwartz, Marcus Tressl, University of Manchester
  • Book: Spectral Spaces
  • Online publication: 08 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781316543870.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Max Dickmann, Centre National de la Recherche Scientifique (CNRS), Paris, Niels Schwartz, Marcus Tressl, University of Manchester
  • Book: Spectral Spaces
  • Online publication: 08 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781316543870.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Max Dickmann, Centre National de la Recherche Scientifique (CNRS), Paris, Niels Schwartz, Marcus Tressl, University of Manchester
  • Book: Spectral Spaces
  • Online publication: 08 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781316543870.018
Available formats
×