Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Fractional Calculus and Anomalous Transport
- 2 Spectral Expansions and Related Approximations
- 3 Global Schemes for Fractional ODEs (FODEs)
- 4 Global Schemes for Fractional PDEs (FPDEs)
- 5 Integral Fractional Laplacian in Unbounded Domains
- 6 Fractional Laplacian in Bounded Domains
- 7 Time-Integration of Fractional Models
- 8 Applications of Anomalous Transport and Fractional Modeling
- References
- Index
2 - Spectral Expansions and Related Approximations
Published online by Cambridge University Press: 31 October 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Fractional Calculus and Anomalous Transport
- 2 Spectral Expansions and Related Approximations
- 3 Global Schemes for Fractional ODEs (FODEs)
- 4 Global Schemes for Fractional PDEs (FPDEs)
- 5 Integral Fractional Laplacian in Unbounded Domains
- 6 Fractional Laplacian in Bounded Domains
- 7 Time-Integration of Fractional Models
- 8 Applications of Anomalous Transport and Fractional Modeling
- References
- Index
Summary
We present the need for new fractional spectral theories, explicitly yielding rather non-polynomial, yet orthogonal, eigensolutions to effectively represent the singularities in solutions to FODEs/FPDEs. To this end, we present the regular/singular theories of fractional Sturm–Liouville eigen-problems. We call the corresponding explicit eigenfunctions of these problems Jacobi poly-fractonomials. We demonstrate their attractive properties including their analytic fractional derivatives/integrals, three-term recursions, special values, function approximability, etc. Subsequently, we introduce the notion of generalized Jacobi poly-fractonomials (GJPFs), expanding the range of admissible parameters also allowing function singularities of negative indices at both ends. Next, we present a rigorous approximation theory for GJPFs with numerical examples. We further generalize our fractional Sturm–Liouville theories to regular/singular tempered fractional Sturm–Liouville eigen-problems, where a new exponentially tempered family of fractional orthogonal basis functions emerges. We finally introduce a variant of orthogonal basis functions suitable for anomalous transport that occurs over significantly longer time-periods.
- Type
- Chapter
- Information
- Spectral and Spectral Element Methods for Fractional Ordinary and Partial Differential Equations , pp. 37 - 121Publisher: Cambridge University PressPrint publication year: 2024