Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:27:56.660Z Has data issue: false hasContentIssue false

10 - The Species–Area Relationship: Idiosyncratic or Produced by ‘Laws Acting around Us’?

from Part III - Theoretical Advances in Species–Area Relationship Research

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Ecologists generally hold out hope that a unified understanding of ecosystems is possible because, in Darwin’s words, they are governed by 'laws acting around us'. But at the same time, ecologists take delight in the idiosyncrasies of nature, in the features that are unique to an organism or an ecosystem, in the phenomena that resist general theory. Sometimes this duality leads particularists to condemn the search for laws and universal theory and theorists to denigrate natural history as stamp collecting. Such conflicts are foolish. Here I demonstrate that the search to understand the species–area relationship (SAR) and the other patterns studied by macroecologists as well, exemplify how a well-defined boundary can be drawn between two legitimate domains: the phenomena that are unified by theory and those that are idiosyncratic.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 227 - 258
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arfken, G. B. & Weber, H. J. (2005) Mathematical methods for physicists, 6th ed. Burlington, MA: Elsevier Academic Press.Google Scholar
Brown, J., Gillooly, J., Allen, A., Savage, V. & West, G. (2004) Toward a metabolic theory of ecology. Ecology, 85, 17711789.CrossRefGoogle Scholar
Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693715.Google Scholar
Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of races in the struggle for life. London: John Murray.Google Scholar
Dewar, R. C. & Porté, A. (2008) Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology, 251, 389403.Google Scholar
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 4357.CrossRefGoogle Scholar
Frieden, B. R. (1972) Restoring with maximum likelihood and maximum entropy. Journal of the Optical Society of America, 62, 511518.CrossRefGoogle ScholarPubMed
Golan, A. (2018) Foundations of info-metrics: Modeling, inference, and imperfect information. Oxford: Oxford University Press.Google Scholar
Golan, A., Judge, G. & Miller, D. (1996) Maximum entropy econometrics: Robust estimation with limited data. New York: Wiley.Google Scholar
Graham, C. H., Parra, J. L., Rahbek, C. & McGuire, J. A. (2009) Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences USA, 106, 1967319678.Google Scholar
Green, J. L., Holmes, A. J., Westoby, M., Oliver, I., Briscoe, D., Dangerfield, M., Gillings, M. & Beattie, A. (2004) Spatial scaling of microbial eukaryote diversity. Nature, 430, 135138.Google Scholar
Gull, S. F. & Newton, T. J. (1986) Maximum entropy tomography. Applied Optics, 25, 156160.Google Scholar
Haegeman, B. & Loreau, M. (2009) Trivial and nontrivial applications of entropy maximization in ecology: A reply to Shipley. Oikos, 118, 12701278.Google Scholar
Harte, J. (2011) Maximum entropy and ecology: A theory of abundance, distribution, and energetics. Oxford: Oxford University Press.Google Scholar
Harte, J. & Kitzes, J. (2014Inferring regional-scale species diversity from small-plot censusesPLoS One, 10, e0117527.CrossRefGoogle Scholar
Harte, J. & Newman, E. A. (2014) Maximum information entropy: A foundation for ecological theory. Trends in Ecology & Evolution, 29, 384389.CrossRefGoogle ScholarPubMed
Harte, J., Kitzes, J., Newman, E. & Rominger, A. (2013) Taxon categories and the universal species–area relationship. The American Naturalist, 181, 282287.Google Scholar
Harte, J., Rominger, A. & Zhang, Y. (2015) Extending the maximum entropy theory of ecology to higher taxonomic levels. Ecology Letters, 18, 10681077.Google Scholar
Harte, J., Smith, A. & Storch, D. (2009) Biodiversity scales from plots to biomes with a universal species area curve. Ecology Letters, 12, 789797.Google Scholar
Harte, J., Zillio, T., Conlisk, E. & Smith, A. (2008) Maximum entropy and the state variable approach to macroecology. Ecology, 89, 27002711.Google Scholar
Harvey, B. J. & Holzman, B. A. (2014) Divergent successional pathways of stand development following fire in a California closed‐cone pine forestJournal of Vegetation Science25, 8899.Google Scholar
Horner-Devine, M., Lage, M., Hughes, J. & Bohannan, B. J. M. (2004) A taxa–area relationship for bacteria. Nature, 432, 750753.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Jaynes, E. T. (1957a) Information theory and statistical mechanics: I. Physical Review, 106, 620630.CrossRefGoogle Scholar
Jaynes, E. T. (1957b) Information theory and statistical mechanics: II. Physical Review, 108, 171191.Google Scholar
Jaynes, E. T. (1963) Information theory and statistical mechanics. Brandeis Summer Institute 1962, statistical physics (ed. by Ford, K.), pp. 181218. New York: Benjamin.Google Scholar
Jaynes, E. T. (1968) Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4, 227240.CrossRefGoogle Scholar
Jaynes, E. T. (1979) Where do we stand on maximum entropy. The maximum entropy principle (ed. by Levine, R. and Tribus, M.), pp. 15118. Cambridge, MA: MIT Press.Google Scholar
Jaynes, E. T. (1982) On the rationale of maximum entropy methods. Proceedings of the IEEE, 70, 939952.Google Scholar
Kempton, R. A. & Taylor, L. R. (1974) Log-series and log-normal parameters as diversity discriminants for the Lepidoptera. Journal of Animal Ecology, 43, 381399.Google Scholar
Kitzes, J. & Wilber, M. (2016macroeco: Reproducible ecological pattern analysis in PythonEcography39, 361367.Google Scholar
Kraft, N. J., Cornwell, W. K., Webb, C. O. & Ackerly, D. D. (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271283.Google Scholar
Krishnamani, R., Kumar, A. & Harte, J. (2004) Estimating species richness at large spatial scales using data from small discrete plots. Ecography, 27, 637642.CrossRefGoogle Scholar
Kunin, W., Harte, J., He, F., Hui, C., Jobe, J., Ostling, A., Polce, C., Šizling, A., Smith, A., Smith, K., Smart, S., Storch, D., Tjørve, E., Ugland, K., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Lozano, F. & Schwartz, M. (2005) Patterns of rarity and taxonomic group size in plants. Biological Conservation, 126, 146154.CrossRefGoogle Scholar
Marquet, P. A., Allen, A. P., Brown, J. H., Dunne, J. A., Enquist, B. J., Gillooly, J. F., Gowaty, P. A., Green, J. L., Harte, J., Hubbell, S. P., O’Dwyer, J., Okie, J. G., Ostling, A., Ritchie, M., Storch, D. & West, G. B. (2014) On theory in ecology. BioScience, 64, 701710.Google Scholar
Meshulam, L., Gauthier, J., Brody, C., Tank, D. & Bialek, W. (2017) Collective behavior of place and non-place neurons in the hippocampal network. Neuron, 96, 11781191.Google Scholar
Mora, T., Walczak, A., Bialek, W. & Callan, C. (2010) Maximum entropy models for antibody diversity. Proceedings of the National Academy of Sciences USA, 107, 54055410.Google Scholar
Newman, E. A., Wilber, M. Q., Kopper, K. E., Moritz, M. A., Falk, D. A., McKenzie, D. & Harte, J. (2020) A comparative study of community structure metrics in a high-severity disturbance regime. Ecosphere, 11(1):e3022.10.1002/ecs2.3022.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.CrossRefGoogle Scholar
Rominger, A. J. & Merow, C. (2016) meteR: An R package for testing the maximum entropy theory of ecology. Methods in Ecology and Evolution, 8, 241247.Google Scholar
Rominger, A. J., Goodman, K. R., Lim, J. Y., Armstrong, E. E., Becking, L. E., Bennett, G. M., Brewer, M. S., Cotoras, D. D., Ewing, C. P., Harte, J., Martinez, N. D., O’Grady, P. M., Percy, D. M., Price, D. K., Roderick, G. K., Shaw, K. L., Valdovinos, F. S., Gruner, D. S. & Gillespie, R. G. (2016) Community assembly on isolated islands. Global Ecology & Biogeography, 25 , 769780.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Roussev, V. (2010) Data fingerprinting with similarity digests. Advances in digital forensics VI (ed. by Chow, K.-P. and Shenoi, S.), pp. 207226. Heidelberg, Germany: Springer.Google Scholar
Russell, B. (1912) On the notion of cause. Proceedings of the Aristotelian Society, 13, 126.Google Scholar
Schwartz, M. & Simberloff, D. (2001) Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 4, 464469.CrossRefGoogle Scholar
Shipley, B., Ville, D. & Garnier, E. (2006) From plant traits to plant communities: A statistical mechanics approach to biodiversity. Science, 314, 812814.Google Scholar
Skilling, J. (1984) Theory of maximum entropy image reconstruction. Maximum entropy and Bayesian methods in applied statistics (ed. by Justice, J. H.), pp. 156178. Cambridge: Cambridge University Press.Google Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Morgan Ernest, S. K., Hadly, E. A. & Jones, K. E. (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist, 163, 672691.CrossRefGoogle ScholarPubMed
Steinbach, P. J., Ionescu, R. & Matthews, C. R. (2002) Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding. Biophysical Journal, 82, 22442255.CrossRefGoogle ScholarPubMed
Supp, S. R., Xiao, X., Ernest, S. & White, E. (2012) An experimental test of the response of macroecological patterns to altered species interactions. Ecology, 93, 25052511.CrossRefGoogle ScholarPubMed
Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 24182424.Google Scholar
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W. F., Laurance, S. G. W., Marimon, B. S., Marimon, B.-H., Guimarães Vieira, I. C., Amaral, I. L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J. F., Mogollón, H. F., Matos, F. D. d. A., Dávila, N., García-Villacorta, R., Stevenson Diaz, P. R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A. J. D., Fernandez Piedade, M. T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P. V. A., Peres, C. A., Toledo, M., Aymard, C. G. A., Baker, T. R., Cerón, C., Engel, J., Henkel, T. W., Maas, P., Petronelli, P., Stropp, J., Zartman, C. E., Daly, D., Neill, D., Silveira, M., Paredes, M. R., Chave, J., Lima Filho, D. d. A., Jørgensen, P. M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E. M., Peñuela Mora, M. C., Phillips, J. F., Rivas, G., van Andel, T. R., von Hildebrand, P., Hoffman, B., Zent, E. L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A. R., Silva, N., Vos, V., Zent, S., Oliveira, A. A., Schutz, A. C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M. N., van der Heijden, G., Vela, C. I. A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K. R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L. E., Zagt, R., Alexiades, M. N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K. G., Feeley, K., Lopez-Gonzalez, G. & Silman, M. R. (2013) Hyperdominance in the Amazonian tree flora. Science, 342, 1243092.CrossRefGoogle ScholarPubMed
Tolstoy, L. (1952) Anna Karenina (trans by Garnett, C.), p. 1. New York: Heritage Press.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475505.CrossRefGoogle Scholar
White, E. P., Thibault, K. & Xiao, X. (2012) Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology, 93, 17721778.Google Scholar
Williams, R. J. (2010) Simple MaxEnt models explain food web degree distributions. Theoretical Ecology, 3, 4552.Google Scholar
Xiao, X., McGlinn, D. & White, E. (2015) A strong test of the maximum entropy theory of ecology. The American Naturalist, 185, E70E80.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×