Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T04:51:34.176Z Has data issue: false hasContentIssue false

Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

ACIA. (2004). Impacts of a warming Arctic: Arctic climate impact assessment. ACIA Overview Report. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
Barsch, D. (1981). Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Barsch, D., Gude, M., Mäusbacher, R., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie N.F., Supplementband, 97, 111122.Google Scholar
Becht, M. (1995). Untersuchungen zur aktuellen Reliefentwicklung in alpine Einzugsgebieten. München: Münchener Geographische Abhandlungen, A47.Google Scholar
Beylich, A. A. (1999). Hangdenudation und fluviale Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung. Prozessgeomorphologische Untersuchungen im Bergland der Austfirđir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft. Aachen: Shaker.Google Scholar
Beylich, A. A. (2000). Geomorphology, sediment budget and relief development in Austdalur, Austfirdir, East Iceland. Arctic, Antarctic, and Alpine Research, 32(4), 466477.CrossRefGoogle Scholar
Beylich, A. A. (2002). Sediment budgets and relief development in present periglacial environments – a morphosystem analytical approach. Hallesches Jahrbuch für Geowissenschaften, A24, 111126.Google Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie N.F., 55(2), 145174.CrossRefGoogle Scholar
Beylich, A. A., and Kneisel, Ch. (2009). Sediment budget and relief development in Hrafndalur, sub-Arctic oceanic eastern Iceland. Arctic, Antarctic, and Alpine Research, 41(1), 317.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Linde, N., Pedersen, L. B., Thyrsted, T., Gintz, D., and Dynesius, L. (2003). Assessment of chemical denudation rates using hydrological measurements, water chemistry analysis and electromagnetic geophysical data. Permafrost and Periglacial Processes, 14, 387397.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., and Gintz, D. (2004a). Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, arctic-oceanic Swedish Lapland. Geomorphology, 58, 125143.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., Linde, N., Pedersen, L. B., and Dynesius, L. (2004b). Chemical denudation in arctic-alpine Latnjavagge (Swedish Lapland) in relation to regolith as assessed by radio-magnetotelluric-geophysical profiles. Geomorphology, 57, 303319.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., Decaulne, A., Dixon, J. C., Orwin, J. F., Otto, J.-C., Overeem, I., Sæmundsson, Þ., Warburton, J., and Zwoliński, Z. (2010a). Sedimentary fluxes and budgets in changing cold environments: The global IAG/AIG Sediment Budgets in Cold Environments (SEDIBUD) Programme. Geografiska Annaler, 92A(2), 151153.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012a). Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology, 167–168, 7790.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012b). Seasonal and annual variations of surface water chemistry, solute fluxes and chemical denudation in a steep and glacier-fed mountain catchment in western Norway (Erdalen, Nordfjord). Catena, 96, 1227.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2014). Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology, 218, 7287.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567.CrossRefGoogle Scholar
Beylich, A. A., Liermann, S., and Laute, K. (2010b). Fluvial transport during thermally and pluvially induced peak runoff events in a glacier-fed mountain catchment in western Norway. Geografiska Annaler, 92A(2), 237246.CrossRefGoogle Scholar
Beylich, A. A., Molau, U., Luthbom, K., and Gintz, D. (2005). Rates of chemical and mechanical fluvial denudation in an arctic-oceanic periglacial environment, Latnjavagge drainage basin, northernmost Swedish Lapland. Arctic, Antarctic, and Alpine Research, 37(1), 7587.CrossRefGoogle Scholar
Beylich, A. A., Sandberg, O., Molau, U., and Wache, S. (2006a). Intensity and spatio-temporal variability of fluvial sediment transfers in an arctic-oceanic periglacial environment in northernmost Swedish Lapland. Geomorphology, 80(1–2), 114130.CrossRefGoogle Scholar
Beylich, A. A., Schmidt, K.-H., Neuvonen, S., Forbrich, I., and Schildt, A. (2006b). Solute fluxes in the Kidisjoki catchment, subarctic Finnish Lapland. Géomorphologie: Relief, Processus, Environment, 3, 205212.Google Scholar
Beylich, A. A., and Warburton, J., eds. (2007). Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual. NGU Report 2007.053, Trondheim.Google Scholar
Caine, N. (1995). Temporal trends in the quality of stream water in an alpine environment: Green Lakes Valley, Colorado Front Range, U.S.A. Geografiska Annaler, 77A, 207220.Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., and Thorn, C. E. (2001). Spatial variation of early season surface water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A(4), 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2002). Chemical denudation rates in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A(3–4), 179185.CrossRefGoogle Scholar
Clark, M. J. (1988): Periglacial hydrology. In Clark, M. J., ed., Advances in Periglacial Geomorphology. Chichester: John Wiley and Sons, pp. 415462.Google Scholar
Corbel, J. (1959). Vitesse de l`érosion. Zeitschrift für Geomorphologie N.F., 3, 128.Google Scholar
Darmody, R. G., Allen, C. E., Thorn, C. E., and Dixon, J. C. (2001). The poisonous rocks of Kärkevagge. Geomorphology, 41, 5362.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., and Dixon, J. C. (2008). Competence and decay in the "Valley of Boulders" Kärkevagge, Swedish Lapland. Geografiska Annaler, 90A, 201209.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Harder, R. L., Schlyter, J. P. L., and Dixon, J. C. (2000). Weathering implications of water chemistry in an Arctic-Alpine environment, northern Sweden. Geomorphology, 34, 891000.CrossRefGoogle Scholar
Dessert, C., Gaillardet, J., Dupre, B., Schott, J., and Pokrovski, O. S. (2006). Low- and high-temperature weathering budgets in Kamchatka peninsula. Goldschmidt Conference Abstracts 2006, doi:10.1016/-j.gca.2006.06.295CrossRefGoogle Scholar
Dessert, C., Gaillardet, J., Dupre, B., Schott, J., and Pokrovski, O. S. (2009). Fluxes of high- versus low-temperature water-rock interactions in aerial volcanic areas: Examples from the Kamchatka Peninsula, Russia. Geochimica et Cosmochimica Acta, 73, 148169.CrossRefGoogle Scholar
Dixon, J. C., Darmody, R. G., Schlyter, P., and Thorn, C. E. (1995). Preliminary investigation of geochemical process responses to potential environmental change in Kärkevagge, Northern Scandinavia. Geografiska Annaler, 77A, 259267.Google Scholar
Dixon, J. C., and Thorn, C. E. (2005). Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology, 67, 127145.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (1984). Chemical weathering processes on the Vantage Peak Nunatak, Juneau Icefield, southern Alaska. Physical Geography, 5, 111131.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2008). Spatial scale and chemical weathering in Kärkevagge: Influences on landscape evolution. Zeitschrift für Geomorphologie N.F., 52(1), 2749.CrossRefGoogle Scholar
French, H. M. (1996). The Periglacial Environment, 2nd ed. Essex: Longman.Google Scholar
Gislason, S. R., Arnorsson, S., and Armannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.CrossRefGoogle Scholar
Gislason, S. R., Oelkers, H. E., and Snorrason, A. (2006). Role of river-suspended material in the global carbon cycle. Geology, 34, 4952.CrossRefGoogle Scholar
Hinderer, M. (2012). From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology, 280, 2169.CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitrag zur Geologischen Karte der Schweiz. Geotechnische Serie 36.Google Scholar
Kostrzewski, A., Kaniecki, A., Kapuscinski, J., Klimczak, R., Stach, A., and Zwolinski, Z. (1989). The dynamics and rate of denudation of a glaciated and an unglaciated catchment, Central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Laute, K., and Beylich, A. A. (2012). Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in western Norway. Geomorphology, 167–168, 5169.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2013). Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology, 188, 1230.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014a). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014b). Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, 1634.CrossRefGoogle Scholar
Lopez, T., Beylich, A. A., and Schenk, W. (2007). Assessment and impact of cultural landscape in a U-shaped valley system in western Norway (Erdalen / Nordfjord). NGU Report, 2007.052, 42.Google Scholar
Lutro, O., and Tveten, E. (1996). Bedrock map ÅRDAL M 1:250.000. Norges geologiske undersøkelse, Trondheim.Google Scholar
Peltier, L. C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214236.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42, 71200.Google Scholar
Reid, L. M., and Dunne, T. (1996). Rapid Evaluation of Sediment Budgets. Reiskirchen: Catena Verlag.Google Scholar
Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. Hydrobiologia, 494(1), 7182.CrossRefGoogle Scholar
Summerfield, M. A. (1991). Global Geomorphology. An Introduction to the Study of Landforms. Essex: Longman.Google Scholar
Swanson, F. J., Janda, R. J., Dunne, T., and Swanston, D. N., eds. (1982). Sediment budgets and routing in forested drainage basins. U.S. Forest Service General Technical Report, PNQ-141. Portland, OR: U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station.Google Scholar
Thorn, C. E. (1975). Influences of late-lying snow on rock weathering rinds. Arctic and Alpine Research, 7, 373378.CrossRefGoogle Scholar
Thorn, C. E., Darmody, R. G., Dixon, J. C., and Schlyter, P. (2001). The chemical weathering regime of Kärkevagge, artic-alpine Sweden. Geomorphology, 41, 3752.CrossRefGoogle Scholar
Thorn, C. E., Dixon, J. C., Darmody, R. G., and Allen, C. E. (2006). A ten-year record of the weathering rates of surficial pebbles, Kärkevagge, Swedish Lapland. Catena, 65, 272278.CrossRefGoogle Scholar
Von Lozinski, W. (1909). Über die mechanische Verwitterung der Sandsteine im gemässigten Klima. Bulletin International de L`Academie des Sciences de Cracovie class des Sciences Mathematique et Naturalles, 1, 125.Google Scholar
Von Lozinski, W. (1912). Die periglaziale Facies der mechanischen Verwitterung. Comptes rendus, XI Congres Internationale Geologie, Stockholm 1910, 10391053.Google Scholar

References

André, M. F. (1985). Lichénométrie et vitesses d’avolution des versants arctiques pendant l’Holocéne (région de la baie du Roi, Spitsbergen, 79° N). Revue de Géomorphologie Dynamique, 34, 4972.Google Scholar
André, M. F. (1986). Dating slope deposits and estimating rates of rock wall retreat in Northwest Spitsbergen by lichenometry. Geografiska Annaler, 68A, 6575.CrossRefGoogle Scholar
André, M. F. (1997). Holocene rockwall retreat in Svalbard: a triple-rate evolution. Earth Surface Processes and Landforms, 22, 423440.3.0.CO;2-6>CrossRefGoogle Scholar
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12, 371376.CrossRefGoogle Scholar
Barsch, D. (1981). Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Becht, M. (1995). Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten. Münchner Geographische Abhandlungen, A47, 187 pp.Google Scholar
Bennett, G. L., Molnar, P., Eisenbeiss, H., and McArdell, B. W. (2012). Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben. Earth Surface Processes and Landforms, 17, 16271640.CrossRefGoogle Scholar
Bennett, G. L., Molnar, P., McArdell, B. W., Schlunegger, F., and Burlando, P. (2013). Patterns and controls of sediment production, transfer and yield in the Illgraben. Geomorphology, 188, 6882.CrossRefGoogle Scholar
Beylich, A. A. (1999). Hangdenudation und fluviale Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung – Prozessgeomorphologische Untersuchungen im Bergland der Austfirðir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft. Shaker, Aachen. 130 pp.Google Scholar
Beylich, A. A. (2000). Untersuchungen zum gravitativen und fluvialen Stofftransfer in einem subarktisch-ozeanisch geprägten, permofrostfreien Periglazialgebiet mit pleistozäner Vergletscherung (Austdalur, Ost-Island). Zeitschrift für Geomorphologie N.F., Suppl., 121, 122.Google Scholar
Beylich, A. A. (2008). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift für Geomorphologie, 52, 149197.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie, 55, 145174.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012). Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology, 167–168, 7790.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K., (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567.CrossRefGoogle Scholar
Beylich, A. A., Liermann, S., and Laute, K. (2010). Fluvial transport during thermally and pluvially induced peak runoff events in a glacier-fed mountain catchment in western Norway. Geografiska Annaler, 92A, 237246.CrossRefGoogle Scholar
Bickerton, R. W., and Matthews, J. A. (1993). “Little Ice Age” variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. Journal of Quaternary Science, 8, 4566.CrossRefGoogle Scholar
Brardinoni, F., and Hassan, M. A. (2006). Glacial erosion, evolution of river long-profiles, and the organization of process domains in mountain drainage basins of coastal British Columbia. Journal of Geophysical Research, 111, F01013.CrossRefGoogle Scholar
Caine, N. (1995). Temporal trends in the quality of stream water in an alpine environment: Green Lakes Valley, Colorado Front Range, U.S.A. Geografiska Annaler, 77A, 207220.Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., and Thorn, C. E. (2001). Spatial variation of early season surface water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A, 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2002). Chemical denudation rates in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A, 179185.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciations. Geological Society of America Bulletin, 83, 30593071.CrossRefGoogle Scholar
Church, M., and Slaymaker, O. (1989). Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature, 337, 452454.CrossRefGoogle Scholar
Clark, M. J. (1987). The alpine sediment system: a context for glaciofluvial processes. In Gurnell, A. M. and Clark, M. J., eds., Glaciofluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, pp. 931.Google Scholar
Curry, A. M., and Morris, C. (2004). Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, U.K. Geomorphology, 58, 85106.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Harder, R. L., Schlyter, J. P. L., and Dixon, J. C. (2000).Weathering implications of water chemistry in an Arctic-Alpine environment, northern Sweden. Geomorphology, 34, 89100.CrossRefGoogle Scholar
Darmody, R. G., Allen, C. E., Thorn, C. E., and Dixon, J. C. (2001). The poisonous rocks of Kärkevagge. Geomorphology, 41, 5362.CrossRefGoogle Scholar
de Vente, J., Poesen, J., Arabkhedri, M., and Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31, 155178.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (1984). Chemical weathering processes on the Vantage Peak Nunatak, Juneau Icefield, southern Alaska. Physical Geography, 5, 111131.CrossRefGoogle Scholar
Dixon, J. C., Darmody, R. G., Schlyter, J. P. L., and Thorn, C. E. (1995). Preliminary investigations of geochemical process responses to potential environmental change in Kärkevagge, Northern Scandinavia. Geografiska Annaler, 77A, 259267.Google Scholar
Dixon, J. C., Thorn, C. E., Darmody, R. G., and Schlyter, P. (2001). Weathering rates of fine pebbles at the soil surface in Kärkevagge, Swedish Lapland. Catena, 45, 273286.CrossRefGoogle Scholar
Dixon, J. C., Campbell, S. W., Thorn, C. E., and Darmody, R. G. (2005). Incipient weathering rind development on introduced machine-polished granite discs in an Artic alpine environment, northern Scandinavia. Earth Surface Processes and Landforms, 31, 111121.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2008). Spatial scale and chemical weathering in Kärkevagge: Influences on landscape evolution. Zeitschrift für Geomorphologie N.F., Suppl., 52, 2749.CrossRefGoogle Scholar
Etzelmüller, B., and Hagen, J. O. (2005). Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. In Harris, C. and Murton, J. B., eds., Cryospheric Systems: Glaciers and Permafrost. London: Geological Society, Special Publications, 242, pp. 1127.Google Scholar
Gardner, J. S. (1983). Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountains. Zeitschrift für Geomorphologie N.F., 27, 311324.CrossRefGoogle Scholar
Gislason, S. R., Arnorsson, S., and Armannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.CrossRefGoogle Scholar
Grove, J. M. (2004). Little Ice Ages: Ancient and Modern, 2nd ed., 2 vols. London and New York: Routledge, pp. 1402 (and 406–718).Google Scholar
Gurnell, A. M., and Clark, M. J., ed. (1987). Glacio-Fluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley.Google Scholar
Hammer, K. M., and Smith, N. D. (1983). Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12, 99106.CrossRefGoogle Scholar
Hansen, L., Beylich, A. A., Burki, V., Eilertsen, R., Fredin, O., Larsen, E., Lyså, A., Nesje, A., Stalsberg, K., and Tønnesen, J.-F. (2009). Stratigraphic architecture and infill history of a deglaciated bedrock valley based on georadar, seismic profiling and drilling. Sedimentology, 56, 17511773.CrossRefGoogle Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2002). Quantifying sediment transport by avalanches in the Bavarian Alps – first results. Zeitschrift für Geomorphologie N.F., 127, 137152.Google Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2005). Sediment transport by avalanches in the Bavarian Alps revisited – a perspective on modelling. Zeitschrift für Geomorphologie N.F., 138, 1125.Google Scholar
Hewitt, K., Byrne, M.-L., English, M., and Young, G., eds. (2002). Landscapes of Transition: Landform Assemblages and Transformations in Cold Regions. London: Kluwer Academic Publishers (256 pp.).CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitraege zur Geologie der Schweiz, Geotechnische Serie, Luf, 36, 136 pp.Google Scholar
Krautblatter, M., Moser, M., Schrott, L., Wolf, J., and Morche, D. (2012). Significance of rockfall magnitude and solute transport for rock slope erosion and geomorphic work in an Alpine trough valley (Reintal, German Alps). Geomorphology, 167–168, 2134.CrossRefGoogle Scholar
Larsen, E., and Mangerud, J. (1981). Erosion rate of a younger Dryas cirque glacier at Kråkenes, western Norway. Annals of Glaciology, 2, 153158.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2010). Characteristics of floodplain deposits within a braided sandur system in upper Erdalen (Nordfjord, western Norway). Geografiska Annaler, 92A, 211223.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2012). Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in Western Norway. Geomorphology, 167–168, 5169.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2013). Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology, 188, 1230.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014a). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014b). Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, 1634.CrossRefGoogle Scholar
Luckman, B. H. (1977). The geomorphic activity of snow avalanches. Geografiska Annaler, 59A 12, 31–48.Google Scholar
Luckman, B. H., and Fiske, C. J. (1995). Estimating long-term rockfall accretion rates by lichenometry. In Slaymaker, O., ed., Steepland Geomorphology. Chichester: Wiley, pp. 233255.Google Scholar
Lutro, O., and Tveten, E., (1996). Bedrock map ÅRDAL M 1:250.000. Norges geologiske undersøkelse, Trondheim.Google Scholar
Maizels, J. (1979). Proglacial aggradation and changes in braided channel patterns during a period of glacier advance: an alpine example. Geografiska Annaler, 61A, 6591.Google Scholar
Matthews, J. A., Shakesby, R. A., Schnabel, C., and Freeman, S. (2008). Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway I: testing the method and confirmation of the date of the Erdalen event (c. 10 ka) at its type-site. The Holocene, 18, 11551164.CrossRefGoogle Scholar
McClung, D. M. (2003). Magnitude and frequency of avalanches in relation to terrain and forest cover. Arctic, Antarctic and Alpine Research, 35, 8290.CrossRefGoogle Scholar
Milliman, J. D., and Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. J. Geol., 91, 121.CrossRefGoogle Scholar
Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/tectoniccontrol of sediment discharge to the oceans: the importance of small mountainous rivers. J. Geol., 100, 325344.CrossRefGoogle Scholar
Moore, J. R., Sanders, J. W., Dietrich, W. E., and Glaser, S. D. (2009). Influence of rock mass strength on the erosion rate of Alpine Cliffs. Earth Surface Processes and Landforms, 34, 13391352.CrossRefGoogle Scholar
Nesje, A. (1984). Kvartærgeologiske undersøkningar i Erdalen, Stryn, Sogn og Fjordane. M.S. Thesis. University of Bergen, 201 pp.Google Scholar
Nesje, A. (2009). Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews, 28, 21192136.CrossRefGoogle Scholar
Nesje, A., Bakke, J., Dahl, S. O., Lie, Ø., and Matthews, J. A. (2008). Norwegian mountain glaciers in the past, present and future. Global and Planetary Change, 60, 1027.CrossRefGoogle Scholar
Owens, P. N., and Slaymaker, O., eds. (2004). Mountain Geomorphology. London: Edward Arnold publishers, 320 pp.Google Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler, 42A, 1200.Google Scholar
Sass, O. (2005a). Spatial patterns of rockfall intensity in the northern Alps. Z. Geomorphol. Suppl., 138, 5165.Google Scholar
Sass, O. (2005b). Temporal variability of rockfall in the Bavarian Alps, Germany. Arct. Antarct. Alp. Res., 37, 564573.CrossRefGoogle Scholar
Thorn, C. E. (1975). Influences of late-lying snow on rock weathering rinds. Arct. Alp. Res., 7, 373378.CrossRefGoogle Scholar
Trenhaile, A. S. (2007). Geomorphology: A Canadian Perspective, 3rd ed. Oxford: Oxford University Press, pp. 114116.Google Scholar
Walling, D. E. (1983). The sediment delivery problem. J. Hydrol, 65, 209237.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Warburton, J. (2007). Sediment budgets and rates of sediment transfer across cold environments in Europe: a commentary. Geografiska Annaler, 89A, 95100.CrossRefGoogle Scholar
Winkler, S., and Matthews, J. A. (2010). Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology, 116, 87106.CrossRefGoogle Scholar

References

Anderson, S. P., Drever, J. I., Frost, C. D., and Holden, P. (2000). Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta, 64(7), 11731189.CrossRefGoogle Scholar
Arnell, N. W., and Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351364.CrossRefGoogle Scholar
Beedle, M. J., Menounos, B., Luckman, B. H., and Wheate, R. (2009). Annual push moraines as climate proxy. Geophysical Research Letters, 36, L20501, DOI:10.1029/2009GL039533.CrossRefGoogle Scholar
Bolch, T., Menounos, B., and Wheate, R. (2010). Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment, 114, 127137.CrossRefGoogle Scholar
BCMOE. (2002). Environmental trends in British Columbia: 2007. Victoria, BC: British Columbia Ministry of Environment. State of Environment Reporting. URL: www.env.gov.bc.ca/soe/Google Scholar
BCMOE. (2007). Environmental trends in British Columbia: 2007. Victoria, BC: British Columbia Ministry of Environment. State of Environment Reporting. URL: www.env.gov.bc.ca/soe/et07/.Google Scholar
Casassa, G., Lopez, P., Pouyauard, B., and Escobar, F. (2009). Detection of changes in glacial runoff in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrological Processes, 23, 3141.CrossRefGoogle Scholar
Church, M., and Slaymaker, O. (1989). Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature, 337, 452454.CrossRefGoogle Scholar
Collins, D. N. (1979). Sediment concentration in meltwaters as an indicator of erosion processes beneath an Alpine glacier. Journal of Glaciology, 23, 247259.CrossRefGoogle Scholar
Demmer, D. L., and Mooers, H. D. (2005). Lewis Glacier, South Sister Mountain, Oregon: Farewell Old Friend? Paper and poster presented to Geological Society of America Salt Lake City Meeting, 16–19 October, 2005.Google Scholar
Déry, S. J., and Wood, E. F. (2005). Decreasing river discharge in northern Canada. Geophysical Research Letters, 32, L10401. doi: 10.1029/2005GL022845.CrossRefGoogle Scholar
Déry, S. J., Stahl, K., Moore, R. D., Whitfield, P. H., Menounos, B., and Burford, J. E. (2009). Detection of runoff timing changes in pluvial, nival and glacial rivers of western Canada. Water Resources Research, 45, W04426, doi:10.1029/2008WR006975.Google Scholar
Déry, S. J., Clifton, A., MacLeod, S., and Beedle, M. J. (2010). Blowing snow fluxes in the Cariboo Mountains of British Columbia, Canada. Arctic, Antarctic and Alpine Research, 42(2), 188197.CrossRefGoogle Scholar
Diodato, N., Støren, E. W., Bellocchi, G., and Nesje, A. (2013). Modelling sediment load in a glacial meltwater stream in western Norway. Journal of Hydrology, 486, 343350.CrossRefGoogle Scholar
Fausto, R. S., Mernild, S. H., Hasholt, B., Ahlstrøm, A. P., and Knudsen, N. T. (2012). Modeling suspended sediment concentration and transport, Mittivakkat Glacier, Southeast Greenland. Arctic, Antarctic, and Alpine Research, 44(3), 306318.CrossRefGoogle Scholar
FBC. (2007). Fraser Basin Council. http://www.fraserbasin.bc.caGoogle Scholar
Geilhausen, M., Morche, D., Otto, J. C., and Schrott, L. (2013). Sediment discharge from the proglacial zone of a retreating Alpine glacier. Zeitschrift für Geomorphologie, Supplementary Issues, 57(2), 2953.CrossRefGoogle Scholar
Gurnell, A. M., Clark, M. J., Hill, C. T., and Greenhalgh, J. (1992). Reliability and representativeness of a suspended sediment concentration monitoring programme for a remote alpine proglacial river. In Bogen, J., Walling, D. E., and Day, T., eds., Erosion and Sediment Transport Monitoring in River Basins, Proceedings of the Oslo Symposium 24–28 August 1992, International Association of Hydrological Sciences Publication, 210, 191–200.Google Scholar
Hasholt, B., Walling, D. E., and Owens, P. N. (2000). Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, South-east Greenland. Hydrological Processes, 14, 679699.3.0.CO;2-E>CrossRefGoogle Scholar
Herschey, R. W. E. (1978). Hydrometry, Principles and Practices. Chichester: Wiley. 511 pp.Google Scholar
Hodgkins, R., Cooper, R., Wadham, J., and Tranter, M. (2003). Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sedimentary Geology, 162, 105117.CrossRefGoogle Scholar
Horowitz, A. J. (2008). Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Science of the Total Environment, 400, 315343.CrossRefGoogle ScholarPubMed
IPCC. (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Available at http://www.ipcc.ch/ [accessed 21-10-07].Google Scholar
Jacob, Y., Wahr, J., Pfeffer, W. T., and Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518.CrossRefGoogle ScholarPubMed
Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S. J., and Menounos, B. (2015). Hydro-meteorological drivers and sources of suspended sediment flux in the pro-glacial zone of the retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada. Earth Surface Processes and Landforms, 40(11), 15421559.CrossRefGoogle Scholar
Liermann, S., Beylich, A. A., and van Welden, A. (2012). Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, western Norway. Geomorphology, 167, 91101.CrossRefGoogle Scholar
Mernild, S. H., Seidenkrantz, M., Chylek, P., Liston, G. E., and Hasholt, B. (2012a). Climate-driven fluctuations in freshwater flux to Sermilik Fjord, East Greenland, during the last 4000 years. The Holocene, 22, 155164.CrossRefGoogle Scholar
Mernild, S. H., Malmros, J. K., Yde, J. C., and Knudsen, N. T. (2012b). Multi-decadal marine and land-terminating glacier retreat in Ammassalik region, Southeast Greenland. The Cryosphere, 6, 625639, doi:10.5194/tc-6–625-2012.CrossRefGoogle Scholar
Mernild, S. H., Yde, J. C., Malmros, J. K., and Knudsen, N. T. (2013a). Land-terminating glacier volume changes in different Circum-Arctic areas, mid-1980s to late-2000s/2011. Geografisk Tidsskrift-Danish Journal of Geography, 113(1), 6570, DOI:10.1080/00167223.2013.799311CrossRefGoogle Scholar
Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radić, V., and Zemp, M. (2013b). Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7, 15651577, doi:10.5194/tc-7-1565-2013.CrossRefGoogle Scholar
Milner, A. M., Brown, L. E., and Hannah, D. M. (2009). Hydroecological response of river systems to shrinking glaciers. Hydrological Processes, 23, 6277.CrossRefGoogle Scholar
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm, K., and Jakob, M. (2009). Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrological Processes, 23, 4261.CrossRefGoogle Scholar
Navratil, O., Esteves, M., Legout, C., Gratiot, N., Nemery, J., Willmore, S., and Grangeon, T. (2011). Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment. Journal of Hydrology, 398(3), 246259.CrossRefGoogle Scholar
Orwin, J. F., and Smart, C. C. (2004). Short-term spatial and temporal patterns of suspended sediment transfer in pro-glacial channels, Small River Glacier, Canada. Hydrological Processes, 18, 15211542.CrossRefGoogle Scholar
Owen, L. A., Thackray, G., Anderson, R. S., Briner, J., Kaufman, D., Roe, G., Pfeffer, W., and Yi, C. (2009). Integrated research on mountain glaciers: current status, priorities and future prospects. Geomorphology, 103, 158171.CrossRefGoogle Scholar
Owens, P. N., Batalla, R., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., and Trustrum, N. A. (2005). Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications, 21, 693717.CrossRefGoogle Scholar
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., and Fang, J. (2010). The impacts of climate change on water, resources and agriculture in China. Nature, 467, 4351. doi:10.1038/nature09364CrossRefGoogle ScholarPubMed
Pike, R. G., Spittlehouse, D. L., Bennett, K. E., Egginton, V. N., Tschaplinski, P. J., Murdock, T. Q., and Werner, A. T. (2008). Climate change and watershed hydrology: Part I – Recent and projected changes in British Columbia. Streamline Watershed Management Bulletin, 11, 18.Google Scholar
Porter, P. R., Vatne, G., Ng, F., and Irvine Fynn, T. D. L. (2010). Ice marginal sediment delivery to the surface of a high arctic glacier: Austre Broggerbreen, Svalbard. Geografiska Annaler Series A, 92(4), 437449.CrossRefGoogle Scholar
Reichert, B. K., Bengtsson, L., and Oerlemans, J. (2002). Recent Glacier Retreat Exceeds Internal Variability. Journal of Climate, 15(21), 30693081.2.0.CO;2>CrossRefGoogle Scholar
Rex, J. F., and Petticrew, E. L. (2008). Delivery of marine-derived nutrients to streambeds by Pacific salmon. Nature Geoscience, 1, 840843.CrossRefGoogle Scholar
Rodenhuis, D., Bennett, A., Werner, A., Murdock, T. Q., and Bronaugh, D. (2007). Hydro-climatology and future climate impacts in British Columbia. Victoria, BC: Pacific Climate Impacts Consortium. URL: www.pacificclimate.org/publications/PCIC.ClimateOverview.pdf.Google Scholar
Schiefer, E., Menounos, B., and Wheate, R. (2007). Recent volume loss of British Columbian glaciers, Canada. Geophysical Research Letters, 34, L16503. doi: 10.1029/2007GL030780, 2007.Google Scholar
Singh, P., and Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rainfed, snow fed and glacier fed basins in the Himalayan region. Journal of Hydrology, 300, 140154.CrossRefGoogle Scholar
Singh, P., and Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. Journal of Hydrology, 193, 316350.CrossRefGoogle Scholar
Stott, T. A., and Grove, J. R. (2001). Short-term discharge and suspended sediment fluctuations in the pro-glacial Skeldal River, N. E. Greenland. Hydrological Processes, 15, 407423.CrossRefGoogle Scholar
Stott, T. A., and Mount, N. J. (2007a). Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: implications for global warming. Journal of Hydrology, 332, 259270.CrossRefGoogle Scholar
Stott, T. A., and Mount, N. J. (2007b). The impact of rainstorms on short-term spatial and temporal patterns of suspended sediment transfer over a proglacial zone, Ecrins National Park, France. In Effects of River Sediments and Channel Processes on Social, Economic and Environmental Safety, Proceedings of the Tenth International Symposium on River Sedimentation, Vol. V, River Sediment in the Environment, 259266. Moscow. 1–4 August 2007.Google Scholar
Stott, T. A., and Mount, N. J. (2007c). Sustainability in Alpine proglacial zones: Using the 2003 European heat wave to assess the implications of global warming on sediment transport processes. International Journal of Environmental, Cultural, Economic and Social Sustainability, 3, 23136.Google Scholar
Stott, T. A., Nuttall, A., Eden, N., Smith, K., and Maxwell, D. (2008). Suspended sediment dynamics in the Morteratsch proglacial zone, Bernina Alps, Switzerland. Geografiska Annaler, 90A, 299313.CrossRefGoogle Scholar
Stott, T. A., Owens, P. N., Forrester, B. J., and Lee, J. (2009). Suspended sediment fluxes in the Castle Creek Glacier Proglacial Zone, Cariboo Mountains, British Columbia. Innovations in Practice, 2(1), 4970.Google Scholar
Stott, T., Nuttall, A. M., and Biggs, E. (2014). Observed run-off and suspended sediment dynamics from a minor glacierized basin in south-west Greenland. Geografisk Tidsskrift-Danish Journal of Geography, (ahead-of-print), 1–16.CrossRefGoogle Scholar
Tennant, C., Menounos, B., Wheate, R., and Clague, J. J. (2012). Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006. The Cryosphere, 6(6), 15411552.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Zhang, M., Ren, Q., Wei, X., Wang, J., Yang, X., and Jiang, Z. (2011). Climate change, glacier melting and streamflow in the Niyang River Basin, Southeast Tibet, China. Ecohydrology, 4(2), 288298. doi: 10.1002/eco.206CrossRefGoogle Scholar

References

Ali, K. F., and De Boer, D. H. (2007). Spatial patterns and variation of suspended sediment yield in the upper Indus River basin, northern Pakistan. Journal of Hydrology, 334, 368387CrossRefGoogle Scholar
Andermann, C., Crave, A., Gloaguen, R., Davy, Ph., and Bonnet, S. (2012). Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth and Planetary Science Letters, 351–352, 158170.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., Sharma, M. C., and Finkel, R. C. (2004a). Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, 61, 91110.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., and Finkel, R. C. (2004b). Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199221.CrossRefGoogle Scholar
Barnard, P. L., Owen, L. A., Finkel, R. C., and Asahi, K. (2006). Landscape response to deglaciation in a high relief, monsoon-influenced alpine environment, Langtang Himal, Nepal. Quaternary Science Reviews, 25, 21622176.CrossRefGoogle Scholar
Barsch, D., and Jakob, M. (1998). Mass transport by active rockglaciers in the Khumbu Himalaya. Geomorphology, 26, 215222.CrossRefGoogle Scholar
Bhandary, N., Dahal, R. K., and Okamura, M. (2012). Preliminary understanding of the Seti River debris-flood in Pokhara, Nepal, on May 5th, 2012, Nepal Engineering Association – JC Newsletter, 6(1), 2938.Google Scholar
Bhutiyani, M. R. (2000). Sediment load characteristics of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology, 227, 8492.CrossRefGoogle Scholar
Blöthe, J. H., and Korup, O. (2013). Millennial lag times in the Himalayan sediment routing system. Earth and Planetary Science Letters, 382, 3846CrossRefGoogle Scholar
Blöthe, J. H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., and Kubik, P. W. (2014). Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews, 94, 102119.CrossRefGoogle Scholar
Blythe, A. E., Burbank, D. W., Carter, A., Schmidt, K., and Putkonen, J. (2007). Plio-Quaternary exhumation history of the central Himalaya: 1. Apatite and zircon fission-track and apatite [U–Th]/He data. Tectonics, 26, TC3002. doi:10.1029/2006TC001990.CrossRefGoogle Scholar
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336, 310314. doi: 10.1126/science.1215828.CrossRefGoogle ScholarPubMed
Bollinger, L., Avouac, J.-P., Cattin, R., and Pandey, M. R. 2004. Stress buildup in the Himalaya. Journal of Geophysical Research, 109, B11405, doi:10.1029/2003JB002911CrossRefGoogle Scholar
Bookhagen, B., and Burbank, D. W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi:10.1029/2006GL026037.Google Scholar
Bookhagen, B., Thiede, R. C., and Strecker, M. R. (2005a). Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Planet. Sc. Lett., 231, 131146.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R. C., and Strecker, M. R. (2005b), Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33, 149152.CrossRefGoogle Scholar
Burbank, D. W. (2002). Rates of erosion and their implications for exhumation. Mineral. Mag., 66, 2552.CrossRefGoogle Scholar
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., and Ohja, T. P. (2003). Decoupling of erosion and climate in the Himalaya. Nature, 426, 652655.CrossRefGoogle Scholar
Burbank, D. W., Bookhagen, B., Gabet, E. J., and Putkonen, J. (2012). Modern climate and erosion in the Himalaya. C.R. Geosciences, 344, 610626.Google Scholar
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505510,CrossRefGoogle Scholar
Cenderelli, D. A., and Wohl, E. E. (2003). Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surface Processes and Landforms, 28, 385407. doi: 10.1002/esp.448.CrossRefGoogle Scholar
Chakrapany, G. J., and Saini, R. K. (2009). Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth Sciences, 35, 545553.CrossRefGoogle Scholar
Chen, N. Sh., Hu, G. Sh., Deng, W., Khanal, N. R., Zhu, Y. H., and Han, D. (2013). On the water hazards in the trans-boundary Kosi River basin. Nat. Hazards Earth Syst. Sci., 13, 795808CrossRefGoogle Scholar
Clift, P. D., Shimizu, N., Layne, G. D., Blusztajn, J. S., Gaedicke, C., Schlüter, H.-U., Clark, M. K., and Amjad, S. (2001). Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull, 113, 10391051.2.0.CO;2>CrossRefGoogle Scholar
Collins, B. D., and Jibson, R. W. (2015). Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence (ver. 1.1, August 2015): U.S. Geological Survey Open-File Report. 2015–1142, 50 p., http://dx.doi.org/10.3133/ofr20151142.CrossRefGoogle Scholar
Collins, D. N. (1996). Sediment transport from glacierized basins in the Karakoram Mountains. In Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). Wallingford, UK: IAHS Publications. 236, 85–96.Google Scholar
Collins, D. N., Davenport, J. L., and Stoffel, M. (2013). Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Science of the Total Environment, 468–469, 548559.Google ScholarPubMed
Curray, J. R. (1994). Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371383.CrossRefGoogle Scholar
Derry, L. A., and France-Lanord, C. (1996). Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 5974.CrossRefGoogle Scholar
Dhobal, D. P., Gupta, A. K., Mehta, M., and Khandelwal, D. D. (2013). Kedarnath Disaster: Facts and plausible causes. Current Science, 105(2), 171174.Google Scholar
Dobremez, J.-F. (1976) Le Népal. Écologie et Biogéographie. Paris: CNRS, 363 p.Google Scholar
Dortch, J. M, Owen, L. A, Caffee, M. W., and Kamp, U. (2011). Catastrophic partial drainage of Pangong Tso, northern India and Tibet. Geomorphology, 125, 109121CrossRefGoogle Scholar
Dortch, J. M., Owen, L. A., Haneberg, W. C., Caffee, M. W., Dietsch, C., and Kamp, U. (2009). Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28, 10371054.CrossRefGoogle Scholar
Fergusson, R. J. (1984). Sediment load of Hunza River. In Miller, K. J., ed., International Karakorum Project 2. Cambridge: Cambridge University Press, 581597.Google Scholar
Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Yuping, L. (2008) Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geol Soc Am Bull, 120,144152.CrossRefGoogle Scholar
Fort, M. (1979). La Haute Vallée de la Buri Gandaki. Etudes sur le Quaternaire de l'Himalaya. Paris: Editions du CNRS, 236 p.Google Scholar
Fort, M. (1982). Geomorphological Observations in the Ladakh area (Himalaya): Quaternary evolution and present dynamics. In Gupta, V. J., ed., Contributions to Himalayan Geology, 2.: Delhi: Hindustan Publ. Co., 3958.Google Scholar
Fort, M. (1987). Sporadic morphogenesis in a continental subduction setting: an example from the Annapurna Range, Nepal Himalaya. Zeit. F. Geomorphologie, Suppl.-Bd NF, 63, 936.Google Scholar
Fort, M. (1993). Etude géomorphologique d'une chaîne de collision intracontinentale (Himalaya du Népal, Transversale des Annapurnas). State Professoral Thesis (Habilitation), Université Paris 7, 702 p. dactylographiées.Google Scholar
Fort, M. (2000a). Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki Valley (Higher Himalaya of Nepal). Quaternary International, 65/66, 101119.CrossRefGoogle Scholar
Fort, M. (2000b). Natural conditions and hazards for irrigation in the arid Himalaya of Upper Mustang District, Nepal. In Kreutzmann, H., ed., Sharing Water. New York: Oxford, 239258.Google Scholar
Fort, M. (2003). Are high altitude, lava stream-like, debris mixtures all rock glaciers? A perspective from the Western Himalaya. Zeit. F. Geomorphologie, Suppl.-Bd NF, 130, 1129.Google Scholar
Fort, M. (2010). Pokhara valley (Nepal): a product of a natural catastrophe. In Migon, P., ed., Geomorphological Landscapes of the WorldNew York: Springer Verlag, 27, 265–274.Google Scholar
Fort, M. (2011). Two large late Quaternary rock slope failures and their geomorphic significance, Annapurna Himalayas (Nepal). Geografia Fisica e Dinamica Quaternaria. 34(1), 514.Google Scholar
Fort, M. (2014). Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: focus on the upper Kali Gandaki (Mustang District, Nepal). Environ. Earth Sci., doi:10.1007/s12665-014-3087-y.CrossRefGoogle Scholar
Fort, M., Braucher, R., Bourlès, D., Guillou, V., Rimal, L. N., Gribenski, N., and Cossart, E. (2014). Geomorphic impacts, age and significance of two giant landslide dams in the Nepal Himalayas: Ringmo-Phoksundo (Dolpo District) and Dhampu-Chhoya (Mustang District). Geophysical Research Abstracts, 16, EGU2014-5615Google Scholar
Fort, M., and Cossart, E. (2013). Erosion assessment in the middle Kali Gandaki (Nepal): A sediment budget approach. Journal of Nepal Geological Society, 46, 2540.CrossRefGoogle Scholar
Fort, M., Freytet, P., and Colchen, M. (1982). Structural and sedimentological evolution of the Thakkhola-Mustang Graben (Nepal Himalaya). Zeit. f. Geomorph., N.F., Suppl.-Bd, 42, 7593.Google Scholar
Fort, M., and Peulvast, J.-P. (1995). Catastrophic mass-movements and morphogenesis in the peri-Tibetan ranges: examples from West Kunlun, East Pamir and Ladakh. In Slaymaker, O., ed., Steepland Geomorphology. New York: Wiley, pp. 171198.Google Scholar
France-Lanord, C., and Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 6567.CrossRefGoogle Scholar
Fukui, K., Fujii, Y., Ageta, Y., and Asahi, K. (2007). Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Global and Planetary Change, 55, 251256CrossRefGoogle Scholar
Gabet, E. J., Burbank, D. W., Pratt-Sitaula, , Putkonen, J. B., and Bookhagen, B. (2008). Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett., 267(3–4), 482494, doi:10.1016/j.epsl.2007.11.059.CrossRefGoogle Scholar
Gabet, E. J., Wolff-Boenisch, D., Langner, H., Burbank, D. W., and Putkonen, J. B. (2010). Geomorphic and climatic controls on chemical weathering in the High Himalayas of Nepal. Geomorphology, 122, 205210, doi:10.1016/j.geomorph.2010.06.016CrossRefGoogle Scholar
Galy, A., and France-Lanord, C. (1999a). Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 29, 2326.2.0.CO;2>CrossRefGoogle Scholar
Galy, A., and France-Lanord, C. (1999b). Weathering processes in the Ganges – Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 3160.CrossRefGoogle Scholar
Galy, A., France-Lanord, C., and Derry, L. A. (1999). The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta, 63(13–14), 19051925.CrossRefGoogle Scholar
Gansser, A. (1964). The Geology of the Himalayas. Chichester: Wiley, 289 p.Google Scholar
Garzanti, E., Vezzolia, G., Ando, S., Paparella, P., and Clift, P. D. (2005). Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 229, 287302.CrossRefGoogle Scholar
Godard, V., Burbank, D. W., Bourlès, D. L., Bookhagen, B., Braucher, R., and Fisher, G. B. (2012). Impact of glacial erosion on 10Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal. Journal of Geophysical Research, 117, F03013, doi:10.1029/2011JF002230, 17p.CrossRefGoogle Scholar
Hallet, B., Zeitler, P., Koons, P., Finnegan, N., and Barker, A. D. (2010). Erosion rates at the crest of the Himalaya: slow or fast? In Leech, M. L., Klemperer, S. L., and Mooney, W. D., eds., Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop. Menlo Park, CA: U.S. Geological Survey. Open-File Report 2010-1099, 2 p. [http://pubs.usgs.gov/of/2010/1099/hallet/].Google Scholar
Harper, J. T., and Humphrey, N. (2003). High altitude Himalayan climate inferred from glacial ice flux. Geophysical Research Letters 30(14), 1764, doi:10.1029/2003GL017329CrossRefGoogle Scholar
Hasnain, S. I., and Chauhan, D. S. (1993). Sediment transfer in the glaciofluvial environment – a Himalayan perspective. Environmental Geology, 22, 205211.CrossRefGoogle Scholar
Hasnain, S. I., and Thayyen, R. J. (1999a). Controls on the major-ion chemistry of the Dokriani glacier meltwaters, Ganga basin, Garhwal Himalaya, India. J. of Glaciology, 45(149), 8792.CrossRefGoogle Scholar
Hasnain, S. I., and Thayyen, R. J. (1999b). Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. Journal of Hydrology, 218, 191198.CrossRefGoogle Scholar
Heim, A., and Gansser, A. (1939). Central Himalaya: Geological Observations of the Swiss Expedition 1936. New Delhi: Hindustan Publishing Corporation, 73, 245.Google Scholar
Heimsath, A. M., and McGlynn, R. (2008). Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology, 97(1–2), 523.CrossRefGoogle Scholar
Heuberger, H., and Weingartner, H. (1985). Die Ausdehnung der letzteiszeitlichen Vergletscherung an der Mount-Everest-Südflanke, Nepal. Mitteilungen der Österreichischen Geographischen Gesellschaft, 127, 7180.Google Scholar
Hewitt, K. (1988). Catastrophic landslide deposits in the Karakoram Himalaya. Science, 242, 6477.CrossRefGoogle ScholarPubMed
Hewitt, K. (1998). Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology, 26, 4780CrossRefGoogle Scholar
Hewitt, K. (1999). Quaternary moraines vs. catastrophic avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51, 220237.CrossRefGoogle Scholar
Hewitt, K. (2002). Postglacial landform and sediment associations in a landslide-fragmented river system: The trans-Himalayan Indus streams, Inner Asia. In Hewitt, K., Byrne, M.-L., English, M., and Young, G., eds., Landscapes of Transition: Landform Assemblages and Transformations in Cold Regions: Amsterdam: Kluwer, p. 6391.CrossRefGoogle Scholar
Hewitt, K. (2009a). Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat–Haramosh Massif, Upper Indus basin, northern Pakistan. Quaternary Science Reviews, 28, 24/10/2015 3:43 PM1055–1069CrossRefGoogle Scholar
Hewitt, K. (2009b). Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology, 103, 6679.CrossRefGoogle Scholar
Hewitt, K., Gosse, J., and Clague, J. J. (2011) Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geol. Soc. Am. Bull., 123, 18361850.CrossRefGoogle Scholar
Hobley, D. E. J., Sinclair, H. D., and Mudd, S. M. (2012). Reconstruction of a major storm event from its geomorphic signal: The Ladakh floods, 6 August 2010. Geology, 40(6), 483486.CrossRefGoogle Scholar
Hodson, A., Porter, P., Lowe, A., and Mumford, P. (2002). Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier, Pakistan. Journal of Hydrology, 262, 193208.CrossRefGoogle Scholar
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F. P. (2010), Climate change will affect the Asian water towers. Science, 328(5984), 1382–5, doi:10.1126/science.1183188.CrossRefGoogle ScholarPubMed
Immerzeel, W. W., Pellicciotti, F., and Bierkens, M. F. P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, Published online, doi: 10.1038/NGEO1896.CrossRefGoogle Scholar
Kargel, J. S. et al. (2015). Geomorphic and geologic controls of geohazards induced by Nepal?s 2015 Gorkha earthquake. Science. http://dx.doi.org/10.1126/science.aac8353.Google Scholar
Kargel, J. S., Leonard, G., Paudel, L., Regmi, D., Fort, M., Mool, P., Poudel, K., Thapa, B., and Watanabe, T. (2014). The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal. Geophysical Research Abstracts, 16, EGU2014-12448-1.Google Scholar
Karim, A., and Veizer, J. (2000). Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chemical Geology, 170, 153177CrossRefGoogle Scholar
Korup, O., and Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26, 34063422.CrossRefGoogle Scholar
Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261, 578589, doi: 10.1016/j.epsl.2007.07.025.CrossRefGoogle Scholar
Korup, O., Montgomery, D. R., and Hewitt, K. (2010). Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proc. Natl. Acad. Sci. USA, 107, 53175322.CrossRefGoogle ScholarPubMed
Korup, O., Strom, A. L., and Weidinger, J. T. (2006). Fluvial response to large rock-slope failures – examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology, 78, 321.CrossRefGoogle Scholar
Lal, D., Harris, N. B. W., Sharma, K. K., Gu, Z., Ding, L., Liu, T., Dong, W., Caffee, M. W., and Jull, A. J. T. (2003). Erosion history of the Tibetan Plateau since the last interglacial: constraints from the first studies of cosmogenic 10Be from Tibetan bedrock. Earth Planet. Sc. Lett., 217, 3342.CrossRefGoogle Scholar
Lang, K. A., and Huntington, K. W. (2014). Antecedence of the Yarlung-Siang-Brahmaputra River, eastern Himalaya. Earth Planet. Sc. Lett., 397, 145158.CrossRefGoogle Scholar
Lu, X. X., Zhang, S., and Xu, J. (2010). Climate change and sediment fluxes from the Roof of the World. Earth Surface Processes and Landforms, 35(6), 732735.CrossRefGoogle Scholar
Lutz, A. F., Immerzeel, W. W., and Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, Published online, doi: 10.1038/NCLIMATE2237.CrossRefGoogle Scholar
Lupker, M., Blard, P.-H., Lavé, J., France-Lanord, C., Leanni, L., Puchol, N., Charreau, J., and Bourlès, D. (2012). 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet. Sci. Lett., 333334, 146156.CrossRefGoogle Scholar
Métivier, F., Gaudemer, Y., Tapponnier, P., and Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280318.CrossRefGoogle Scholar
Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525544.CrossRefGoogle Scholar
Mitchell, W. A., McSaveney, M. J., Zondervan, A., Kim, K., Dunning, D. A., and Taylor, P. J., (2007). The Keylong Seri rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications. Landslides, 4, 245254.CrossRefGoogle Scholar
Molnar, P., and England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346(6279), 2934.CrossRefGoogle Scholar
Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., and Gillespie, A. (2004). Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quaternary Res., 62, 201207. doi: 10.1016/j.yqres.2004.06.008.CrossRefGoogle Scholar
Mool, P. K., Bajracharya, S. R., and Joshi, S. P. (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods, Nepal. Kathmandu: ICIMOD and UNEP/RRC-AP.Google Scholar
Moore, M. A., and England, P. C. (2001). On the inference of denudation rates from cooling ages of minerals. Earth Planet. Sci. Lett., 185, 265284.CrossRefGoogle Scholar
Niemi, N. A., Oskin, M., Burbank, D. W., Heimsath, A. M., and Gabet, E. (2005). Effects of bedrock landslides on cosmogenically determined erosion rates. Earth and Planetary Science Letters, 237, 480498.CrossRefGoogle Scholar
Osti, R., and Egashira, S. (2009). Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal. Hydrological Processes, 23, 29432955.CrossRefGoogle Scholar
Owen, L. A., and England, J. (1998). Observations on rock glaciers in the Himalayas and Karakoram Mountains of northern Pakistan and India. Geomorphology, 26, 199213.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Upadhyay, R., Ram-Awatar, , and Sinha, A. K. (2005). Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—A study based on field observations. Geomorphology, 65, 241256CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Srivastava, P., and Ray, Y. (2009). Chronology of relic lake deposits in the Spiti river, NW Trans Himalaya: Implications to Late Pleistocene-Holocene climate-tectonic perturbations. Geomorphology, 108, 264272CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., and Kothyari, G. C. (2013). Damming of River Indus during Late Quaternary in Ladakh Region of Trans-Himalaya, NW India: implications to lake formation-climate and tectonics. Chinese Science Bulletin, 58(Suppl.1), 142155Google Scholar
Pratt-Sitaula, B. A., Burbank, D. W., Heimsath, A., and Ohja, T. P. (2004). Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology, 58, 223241.CrossRefGoogle Scholar
Pratt-Sitaula, B. A., Garde, M., Burbank, D. W., Oskin, M., Heimsath, A., and Gabet, E. J. (2007). Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record. Quat. Res., 68, 111120.CrossRefGoogle Scholar
Pratt-Sitaula, B., Burbank, D. W., Heimsath, A. M., Humphrey, N. F., Oskin, M., and Putkonen, J. (2011). Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal. Geophys. Res. Lett., 38, L24502, doi:10.1029/2011GL049940.CrossRefGoogle Scholar
Rao, K. H. V., Rao, V. V., Dhdhwal, V. K., and Diwakar, P. G. (2014). Kedarnath flash floods: a hydrological and hydraulic simulation study. Current Science, 106(4), 598603.Google Scholar
Regmi, D., and Watanabe, T. (2009). Rockfall activity in the Kangchenjunga area, Nepal Himalaya. Permafrost and Periglac. Process, 20, 390398CrossRefGoogle Scholar
Saylor, J., DeCelles, P., Gehrels, G., Murphy, M., Zhang, R., and Kapp, P. (2010). Basin formation in the High Himalaya by arc parallel extension and tectonic damming: Zhada basin, southwestern Tibet, Tectonics, 29, TC1004, doi:10.1029/2008TC002390.CrossRefGoogle Scholar
Scherler, D., Bookhagen, B., and Strecker, M. R. (2011). Hillslope-glacier coupling: the interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research, 116, F02019, doi:10.1029/2010JF001751CrossRefGoogle Scholar
Schramm, J. M., Weidinger, J. T., and Ibetsberger, H. J. (1998). Petrologic and structural control on geomorphology of prehistoric Tsergo Ri slope failure, Langtang Himal, Nepal. Geomorphology, 26, 107121.CrossRefGoogle Scholar
Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R., Andermann, C., Tofelde, S., Merchel, S., Rugel, G., Fort, M., and Korup, O. (2016). Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. - Science, 351, 6269, p. 147-150, http://doi.org/10.1126/science.aac9865.Google Scholar
Searle, M. P. (1991). Geology and Tectonics of the Karakoram Mountains. New York: Wiley.Google Scholar
Seong, Y. B., Owen, L. A., Bishop, M. P., Bush, A., Clendon, P., Copland, L., Finkel, R. C., Kamp, U., and Shroder, J. F. (2008). Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology, 97, 274286.CrossRefGoogle Scholar
Seong, Y. B., Owen, L. A., Caffee, M. W., Kamp, U., Bishop, M. P., Bush, A., Copland, L., and Shroder, J. F. (2009). Rates of basin-wide rockwall retreat in the K2 region of the Central Karakoram defined by terrestrial cosmogenic nuclide 10Be. Geomorphology, 107, 254262.CrossRefGoogle Scholar
Sharma, M. C., and Owen, L. A. (1996). Quaternary glacial history of the Garhwal Himalaya, India. Quaternary Science Reviews, 15, 335365.CrossRefGoogle Scholar
Shiraiwa, T. (1992). Freeze-thaw activities and rock breakdown in the Langtang Valley, Nepal Himalaya. Environ. Sci., Hokkaido University, 15(1), 112.Google Scholar
Shroder, J. F., Scheppy, R. A., and Bishop, M. P. (1999). Denudation of small alpine basins, Nanga Parbat Himalaya, Pakistan. Arctic, Antarctic and Alpine Research, 31(2), 121127.CrossRefGoogle Scholar
Stewart, R. J., Hallet, B., Zeitler, P. K, Malloy, M. A., Allen, C. M., and Trippett, D. (2008). Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9), 711714. DOI: 10.1130/G24890A.1CrossRefGoogle Scholar
Stolle, A., Langer, M., Blöthe, J. H., and Korup, O. (2015). On predicting debris flows in arid mountain belts. Global and Planetary Change, 126, 113.CrossRefGoogle Scholar
Struck, M., Andermann, C., Bista, R., and Korup, O. (2013). Towards a complete contemporary sediment budget of a major Himalayan river: Kali Gandaki, Nepal. Geophysical Research Abstracts, 15, EGU2013-7008-2.Google Scholar
Thayyen, R. J., Dimri, A. P, Kumar, P., and Agnihotri, (2013). Study of cloudburst and flash floods around Leh, India during August 4–6, 2010. Natural Hazards, 01/2013; 65(3), 21752204.CrossRefGoogle Scholar
Thayyen, R. J., Gergan, J. T., and Dobhal, D. P. (2009). Suspended sediment transfer in a Himalayan headwater stream: glacier vs. monsoon. International Conference on Water, Environment, Energy and Society, Abstract.Google Scholar
Vance, D., Bickle, M., Ivy-Ochs, S., and Kubik, P. W. (2003). Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet. Sci. Lett., 206, 273288.CrossRefGoogle Scholar
Valdyia, K. S. (1998), Dynamic Himalaya, Hyderabad (India): University Press, 178 p.Google Scholar
Vuichard, D., and Zimmermann, M. (1987). The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal. Causes and consequence. Mountain Research and Development, 7, 91110.CrossRefGoogle Scholar
Wang, P., Scherler, D., Liu-Zeng, J., Mey, J., Avouac, J.-P., Zhang, Y., and Shi, D. (2014). Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science, 346(6212), 978981.CrossRefGoogle ScholarPubMed
Wasson, R. J., Juyal, N., Jaiswal, M. K., McCulloch, M., Sarin, M. M., Jain, V., Srivastava, P., and Singhvi, A. K. (2008). The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment. Journal of Environmental Management, 88, 5361.CrossRefGoogle ScholarPubMed
Wasson, R. J., Sundriyal, Y. P., Chaudhary, S., Jaiswal, M. K., Morthekai, P., Sati, S. P., and Juyal, N. (2013). A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Reviews, 77, 156166.CrossRefGoogle Scholar
Watanabe, T., Dali, L., and Shiraiwa, T. (1998). Slope denudation and the supply of debris to cones in Langtang Himal, Central Nepal Himalaya. Geomorphology, 26, 185197.CrossRefGoogle Scholar
Watanabe, T., and Rothacher, D. (1996). The 1994 Lugge Tsho glacial lake outburst flood, Bhutan Himalaya. Mountain Research and Development, 16, 7781. doi:10.2307/3673897.CrossRefGoogle Scholar
Weidinger, J. T., and Ibetsberger, H. J. (2000). Landslide dams of Tal, Latamrang, Ghatta Khola, Ringmo and Darbang in the Nepal Himalayas and related hazards. Journal of the Nepal Geological Society, 22, 371380.CrossRefGoogle Scholar
Westoby, M. J., Glasser, N. F., Hambrey, M. J., Brasington, J., Reynolds, J. M., and Hassan, M. A. A. M. (2014). Reconstructing historic glacial lake outburst floods through numerical modelling and geomorphological assessment: extreme events in the Himalaya. Earth Surf. Process. Landforms, 39, 16751692.CrossRefGoogle Scholar
Wolff-Boenisch, D., Gabet, E. J., Burbank, D. W., Langner, H., and Putkonen, J. B. (2009). Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season. Geochimica et Cosmochimica Acta, 73, 31483170CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., and Scherler, D. (2010): Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology, 118, 1321, doi:10.1016/J.Geomorph.2009.12.003.CrossRefGoogle Scholar
Wulf, H., Bookhagen, B., and Scherler, D. (2012). Climatic and geological controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrol. Earth Syst. Sci., 16, 21932217.CrossRefGoogle Scholar
Yadav, S. K., and Chakrapani, G. J. (2013). Geochemistry, dissolved elemental flux rates, and dissolution kinetics of lithologies of Alaknanda and Bhagirathi rivers in Himalayas, India. Environ Earth Sci., 62, 593610. doi:10.1007/s12665-010-0550-2CrossRefGoogle Scholar
Zeitler, P. K. (1985). Cooling history of the NW Himalaya, Pakistan. Tectonics, 4, 127151.CrossRefGoogle Scholar

References

Ballantyne, C. K., and Harris, C. (1994). The Periglaciation of Great Britain. Cambridge: Cambridge Univ. Press, 330 pp.Google Scholar
Becht, M., Haas, F., Heckmann, T., and Wichmann, V. (2005). Investigating sediment cascades using field measurements and spatial modelling. IAHS Publication 291. Wallingford: IAHS Press, 206213.Google Scholar
Beylich, A. (2000). Untersuchungen zum gravitativen und fluvialen Stofftransfer in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung (Austaldur, Ost-Island). Z Geomorphol N F., Supplementary Issue 121, 122Google Scholar
Bimböse, M., Nicolay, A., Schmidt, K.-H., Bryk, A., and Morche, D. (2011). Investigations on intra- and interannual coarse sediment dynamics in a high-mountain catchment. Z Geomorphol N F., 55 Supplementary Issue 2, 6781. doi:10.1127/0372–8854/2011/0055S2-0046CrossRefGoogle Scholar
Bimböse, M., Schmidt, K.-H., and Morche, D. (2010). High resolution quantification of slope-channel coupling in an alpine geosystem. IAHS Publication 337. Wallingford: IAHS Press, 300–307.Google Scholar
Burt, T., and Allison, R. (2010). Sediment Cascades: An Integrated Approach. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Caine, N. (1974). The geomorphic processes of the alpine environment. In Ives, J. D. and Barry, R. G., eds., Arctic and Alpine Environments. London: Methuen, pp. 721–48.Google Scholar
Chorley, R. J., and Kennedy, B. A. (1971). Physical Geography: A Systems Approach. London: Prentice-Hall International, 370 pp.Google Scholar
Chorley, R. J., Schumm, S. A., and Sudgen, D. E. (1984). Geomorphology, London, New York: Methuen.Google Scholar
Gerst, M. (2000). Hangformung durch Lawinen und Steinschlag in den Nördlichen Kalkalpen am Beispiel des Mittleren Reintals und des Lahnenwiesgrabens. Unpublished Diploma thesis, Institute for Geography, LMU München.Google Scholar
Götz, J., Geilhausen, M., and Schrott, L. (2010). Neue Aspekte zur Einordnung rezenter Sedimentflüsse in einen paraglazialen Kontext und zur innovativen Inwertsetzung geomorphologischer Forschung. Salzburger Geographische Arbeiten, 46, 4162.Google Scholar
Götz, J., and Schrott, L. (2007). A comparison of recent and postglacial sediment fluxes in a paraglacial context. A scale based approach (Reintal, Bavarian Alps). – In Kellerer-Pirkelbauer, A., Keiler, M., Embleton-Hamann, C., and Stötter, J., eds., Geomorphology for the Future, Conference Proceedings, Obergurgl, Austria, 2nd–7th September 2007, Innsbruck, Austria: Innsbruck University Press, 105112.Google Scholar
Götz, J., and Schrott, L. (2010). Das Reintal: Eine Wanderung durch Raum und Zeit – Geomorphologischer Lehrpfad am Fuße der Zugspitze. München: Pfeil-Verlag.Google Scholar
Hagg, W., Mayer, C., Mayr, E., and Heilig, A. (2012). Climate and glacier fluctuations in the Bavarian Alps during the past 120 years. Erdkunde, 66, 121142. DOI: 10.3112/erdkunde.2012.02.03CrossRefGoogle Scholar
Haas, F. (2008). Fluviale Hangprozesse in alpinen Einzugsgebieten der nördlichen Kalkalpen – Quantifizierung und Modellierungsansätze. Eichstätter Geographische Arbeiten 17, München: Profil-Verlag.Google Scholar
Haas, F., Heckmann, T., Wichmann, V., and Becht, M. (2011). Quantification and modeling of fluvial bedload discharge from hillslope channels in two Alpine catchments (Bavarian Alps, Germany). Z Geomorphol N F., 55 Supplementary Issue 3, 147–68. doi: 10.1127/0372–8854/2011/0055S3-0056Google Scholar
Heckmann, T. (2006). Untersuchungen zum Sedimenttransport durch Grundlawinen in zwei Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung, Analyse und Ansätze zur Modellierung der geomorphologischen Aktivität. Eichstätter Geographische Arbeiten 14, München: Profil-Verlag.Google Scholar
Heckmann, T., Bimböse, M., Krautblatter, M., Haas, F., Becht, M., and Morche, D. (2012). From geotechnical analysis to quantification and modeling using LiDAR data: A study on rockfall in the Reintal catchment, Bavarian Alps, Germany. Earth Surface Processes and Landforms, 37, 119133. doi: 10.1002/esp.2250CrossRefGoogle Scholar
Heckmann, T., Haas, F., Wichmann, V., and Morche, D. (2008). Sediment budget and morphodynamics of an alpine talus cone on different timescales. Z Geomorphol N.F., 52 Supplementary Issue 1, 103121. doi:10.1127/0372–8854/2008/0052S1-0103CrossRefGoogle Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2002). Quantifying sediment transport by avalanches in the Bavarian Alps - first results. Z Geomorphol N.F., Supplement-Band 127, 137152.Google Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2005). Sediment transport by avalanches in the Bavarian Alps revisited - a perspective on modelling. Z Geomorphol N.F., Supplement-Band 138, 1125.Google Scholar
Heinimann, H. R., Hollenstein, K., Kienholz, H., Krummenacher, B., and Mani, P. (1998). Methoden zur Ansalyse und Bewertung von Naturgefahren. Umwelt-Materialien Nr. 85, Naturgefahren. Bern: Bundesamt für Umwelt, Wald und Landschaft (BUWAL), 248 p.Google Scholar
Heller, F., and Nieder, R. (1932). Geologisch-geomorphologische Untersuchungen im Partnachtal des Wettersteingebirges. Zeitschrift für Karst – und Höhlenkunde. Mitteilungen d. Forschungsstätte für Karst – und Höhlenkunde, 10, 119153.Google Scholar
Hoffmann, T., and Schrott, L. (2002). Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D-seismic refraction (Reintal, Bavarian Alps). Z Geomorphol N.F., Supplement-Band 127, 153173.Google Scholar
Hüttl, C. (1999). Steuerungsfaktoren und Quantifizierung der chemischen Verwitterung auf dem Zugspitzplatt (Wettersteingebirge, Deutschland. Münchner Geographische Abhandlungen, Reihe B, Band 30, 198, München: GEOBUCH-Verlag.Google Scholar
Keller, D., and Moser, M. (2002). Assessments of field methods for rockfall and soil slip modelling. Z Geomorphol N.F., Supplement-Band 127, 127135.Google Scholar
Koch, F. (2006). Zur raum-zeitlichen Variabilität von Massenbewegungen und pedologische Kartierungen in alpinen Einzugsgebieten - Dendrogeomorphologische Fallstudien und Erläuterungen zu den Bodenkarten Lahnenwiesgraben und Reintal (Bayerische Alpen). Dissertation, Universität Regensburg.Google Scholar
Krautblatter, M., and Dikau, R. (2007). Towards a uniform concept for the comparison and extrapolation of rockwall retreat and rockfall supply. Geografiska Annaler A, 89(1), 2140. doi: 10.1111/j.1468-0459.2007.00305.xCrossRefGoogle Scholar
Krautblatter, M., and Moser, M. (2009). A nonlinear model coupling rockfall and rainfall intensity based on a four year measurement in a high Alpine rock wall (Reintal, German Alps). Natural Hazards and Earth System Sciences, 9, 14251432. doi: 10.5194/nhess-9-1425-2009CrossRefGoogle Scholar
Krautblatter, M., Moser, M., Schrott, L., Wolf, J., and Morche, D. (2012). Significance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geomorphology, 167–168, 3144. doi: 10.1016/j.geomorph.2012.04.007Google Scholar
Küfmann, C. (2003). Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany). Catena, 53, 211227. doi: 10.1016/S0341-8162(03)00075–4CrossRefGoogle Scholar
Küfmann, C. (2013). Solution dynamics at the rock/snow during the ablation period in the subnival karst of the Wetterstein Mountains (Northern Calcareous Alps, Germany). Z Geomorphol N F., 58, 3757. doi: 10.1127/0372–8854/2013/0121CrossRefGoogle Scholar
Lauber, U., Morche, D., Kotyla, P., and Goldscheider, N. (2014). Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow. Hydrology and Earth System Sciences, 18, 44374452. doi: 10.5194/hess-18–4437-2014CrossRefGoogle Scholar
Leuchs, K. (1921). Die Ursachen des Bergsturzes am Reintalanger (Wettersteingebirge). Geologische Rundschau, 12, 189192. doi: 10.1007/BF01800180CrossRefGoogle Scholar
Leuchs, K. (1930). Der Bau der Südrandstörung des Wettersteingebirges. Geologische Rundschau, 21, 8196. doi: 10.1007/BF01802266CrossRefGoogle Scholar
Miller, H. (1961). Der Bau des westlichen Wettersteingebirges. Z. dt. geol. Ges., 113, 161203.Google Scholar
Morche, D. (2010). Die fluviale Lösungsfracht und ihre Effektivität bei der rezenten geomorphologischen Formung in einem kalkalpinen Hochgebirgstal. Salzburger Geographische Arbeiten, 46, 95112.Google Scholar
Morche, D., and Bryk, A. (2010) Bed load transport in an Alpine river after a high magnitude flood: results from the 2008 field campaign. IAHS Publication 336. Wallingford: IAHS Press, 157–163Google Scholar
Morche, D., Katterfeld, C., Fuchs, S., and Schmidt, K.-H. (2006). The life-span of a small high mountain lake, the Vordere Blaue Gumpe in Upper Bavaria, Germany. IAHS Publication 306. Wallingford: IAHS Press, 7281.Google Scholar
Morche, D., and Laute, K. (2009). Investigating channel response to a dambreak flood event in an Alpine river – Downstream trends in stream power and channel bed particle characteristics. Arctic, Antarctic, and Alpine Research, 41(1), 6978. doi: 10.1657/1938–4246(08-024)[MORCHE]2.0.CO;2CrossRefGoogle Scholar
Morche, D., and Schmidt, K.-H. (2005). Particle size and particle shape analyses of unconsolidated material from sediment sources and sinks in a small Alpine catchment (Reintal, Bavarian Alps, Germany). Z Geomorphol N.F., Supplement-Band 138, 6780.Google Scholar
Morche, D., and Schmidt, K.-H. (2012). Sediment transport in an alpine river before and after a dambreak flood event. Earth Surface Processes and Landforms, 37, 347353. doi: 10.1002/esp.2263CrossRefGoogle Scholar
Morche, D., Schmidt, K.-H., Heckmann, T., and Haas, F. (2007). Hydrology and geomorphic effects of a high magnitude flood in an Alpine river. Geografiska Annaler A, 89(1), 519. doi: 10.1111/j.1468-0459.2007.00304.xCrossRefGoogle Scholar
Morche, D., Schmidt, K.H., Sahling, I., Herkommer, M., and Kutschera, J. (2008a). Volume changes of Alpine sediment stores in a state of post-event disequilibrium and the implications for downstream hydrology and bed load transport. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 62, 89101. DOI: 10.1080/00291950802095079CrossRefGoogle Scholar
Morche, D., Witzsche, M., and Schmidt, K.-H. (2008b). Hydrogeomorphological characteristics and sediment transport of a high mountain river (Partnach River, Reintal Valley, Bavarian Alps, Germany) Z Geomorphol N.F., 52 Supplementary Issue 1, 5177. doi: 10.1127/0372–8854/2008/0052S1-0051CrossRefGoogle Scholar
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A. (2010). A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler A, 92(2), 155176. doi: 10.1111/j.1468-0459.2010.00387.xCrossRefGoogle Scholar
Otto, J. C., and Dikau, R. (2004). Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Z Geomorphol N.F., 48, 323341.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografisker Annaler A, 42(2–3), 65200.Google Scholar
Rappl, A., Wetzel, K.-F., Büttner, G., and Scholz, M. (2010). Tracerhydrologische Untersuchungen am Partnach-Ursprung. Hydrologie und Wasserbewirtschaftung 54, 222230.Google Scholar
Reis, O. (1910). Erläuterungen zur geologischen Karte des Wettersteingebirges. Geognostische Jahreshefte, 23, 61104.Google Scholar
Sass, O., and Krautblatter, M. (2007). Debris-flow-dominated and rockfall-dominated scree slopes: genetic models derived from GPR measurements. Geomorphology, 86, 176192. doi: 10.1016/j.geomorph.2006.08.012CrossRefGoogle Scholar
Sass, O., Krautblatter, M., and Morche, D. (2007). Rapid lake infill following bergsturz events revealed by GPR measurements (Reintal, German Alps) The Holocene, 17(7), 965977. doi:10.1177/0959683607082412CrossRefGoogle Scholar
Schmidt, K.-H., and Morche, D. (2006). Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology, 80, 131145. doi: 10.1016/j.geomorph.2005.09.01CrossRefGoogle Scholar
Schneevoigt, N. J., van der Linden, S., Thamm, H.-P., and Schrott, L. (2008). Detection of alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology, 93, 104119. doi: 10.1016/j.geomorph.2006.12.034CrossRefGoogle Scholar
Schneevoigt, N. J., and Schrott, L. (2006). Linking geomorphic systems theory and remote sensing. A conceptual approach to Alpine landform detection (Reintal, Bavarian Alps, Germany). Geographica Helvetica, 61, 181190. doi: 10.5169/seals-72613CrossRefGoogle Scholar
Schrott, L., Götz, J., Geilhausen, M., and Morche, D. (2006). Spatial and temporal variability of sediment transfer and storage in an Alpine basin (Bavarian Alps, Germany). Geographica Helvetica, 61, 191200. doi: 10.5169/seals-72614CrossRefGoogle Scholar
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563. doi: 10.1016/S0169-555X(03)00131–4CrossRefGoogle Scholar
Schrott, L., Niederheide, A., Hankammer, M., Hufschmidt, G., and Dikau, R. (2002). Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). - Zeitschrift für Geomorphologie, 127, 175196.Google Scholar
Slaymaker, O. (1991). Mountain geomorphology: a theoretical framework for measurement programmes. Catena, 18, 427437. doi: 10.1016/0341–8162(91)90047-2CrossRefGoogle Scholar
Wetzel, K. F. (1994). Abflussbildung während sommerlicher Niederschläge in einem kleinen Einzugsgebiet der nördlichen Kalkalpen. Erdkunde, 34, 161173.Google Scholar
Wetzel, K.-F. (2004). On the hydrology of the Partnach area in the Wetterstein Mountains (Bavarian Alps). Erdkunde, 58, 172186. doi: 10.3112/erdkunde.2004.02.05CrossRefGoogle Scholar
Wichmann, V. (2006). Modellierung geomorphologischer Prozesse in einem alpinen Einzugsgebiet – Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS. Eichstätter Geographische Arbeiten, 15, 1231.Google Scholar

References

Ambroise, B. (2004). Variable “active” versus “contributing” areas or periods: a necessary distinction. Hydrological Processes, 18, 11491155.CrossRefGoogle Scholar
Baartman, J. E. M., Masselink, R., Keesstra, S. D., and Temme, A. J. A. M. (2013). Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms, 38, 14571471.CrossRefGoogle Scholar
Beel, C. R., Orwin, F., and Holland, P. G. (2011). Controls on slope-to-channel fine sediment connectivity in a largely ice-free valley, Hoophorn Stream, Southern Alps, New Zealand. Earth Surface Processes and Landforms, 36, 981994.CrossRefGoogle Scholar
Borselli, L., Cassi, P., and Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75, 268277.CrossRefGoogle Scholar
Bracken, L. J., and Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21, 17491763.CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 1734.CrossRefGoogle Scholar
Brierly, G., Fryirs, K., and Jain, V. (2006). Landscape connectivity: the geographic basis of geomorphic applications. Area, 38(2), 165174.CrossRefGoogle Scholar
Brown, A. G., Carey, C., Erkens, G., Fuchs, M., Hoffmann, T., Macaire, J.-J., Moldenhauer, K.-M., and Walling, D. E. (2009). From sedimentary records to sediment budgets: multiple approaches to catchment sediment flux. Geomorphology, 108, 3547.CrossRefGoogle Scholar
Callow, J. N., and Smettem, K. R. J. (2009).The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes. Environmental Modelling and Software, 23, 959968.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 3141.CrossRefGoogle Scholar
Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G. (2008). The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena, 73, 249260.CrossRefGoogle Scholar
Choi, Y. (2012). A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure. Environmental Modelling and Software, 30, 8191.CrossRefGoogle Scholar
Choi, Y., Yi, H., and Park, H.-D. (2011). A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure. Computers and Geoscience, 37, 10351044.CrossRefGoogle Scholar
Croke, J., Fryirs, K., and Thompson, C. (2013). Channel-floodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surface Processes and Landforms, 38, 14441456.CrossRefGoogle Scholar
Croke, J., Mockler, S., Fogarty, P., and Takken, I. (2005). Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68, 257268.CrossRefGoogle Scholar
D’Haen, K., Dusar, B., Verstraeten, G., Degryse, P., and De Brue, H. (2013). A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology, 197, 6475.CrossRefGoogle Scholar
Duke, G. D., Kienzle, S. W., Johnson, D. L., and Byrne, J. N. (2003). Improving overland flow routing by incorporating ancillary road data into Digital Elevation Models. Journal of Spatial Hydrology, 3(2), 127.Google Scholar
Duke, G. D., Kienzle, S. W., Johnson, D. L., and Byrne, J. N. (2006). Incorporating ancillary data to refine anthropogenically modified overland flow path. Hydrological Processes, 20, 18271843.CrossRefGoogle Scholar
Faulkner, H. (2008). Connectivity as a crucial determinant of badland morphology and evolution. Geomorphology, 100, 91103.CrossRefGoogle Scholar
Flügel, H. W., and Neubauer, F. (1984). Steiermark, Erläuterungen zur geologischen Karte der Steiermark, 1 : 200 000 – Geologie der österreichischen Bundesländer. Wien: Geologische Bundesanstalt.Google Scholar
Fryirs, K. (2013). (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 3046.CrossRefGoogle Scholar
Fryirs, K. A., Brierly, G. J., Preston, N. J., and Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 4967.CrossRefGoogle Scholar
Harvey, A. M. (1996). Holocene hillslope gully systems in the Howgill Fells, Cumbria. In Anderson, M. G. and Brooks, S. M., eds., Advances in Hillslope Processes. Chichester: Wiley, pp. 247270.Google Scholar
Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42, 225250.CrossRefGoogle Scholar
Heckmann, T., and Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory. Geomorphology, 182, 89103.CrossRefGoogle Scholar
Hiessleitner, G. (1935). Zur Geologie der Erz führenden Grauwackenzone des Johnsbachtales. Jahrbuch der Geologischen Bundesanstalt, 85, 81102.Google Scholar
Hiessleitner, G. (1958). Zur Geologie der Erz führenden Grauwackenzone zwischen Admont-Selzthal-Liezen. Jahrbuch der Geologischen Bundesanstalt, 99, 3577.Google Scholar
Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 2159.CrossRefGoogle Scholar
Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56, 7994.CrossRefGoogle Scholar
Lopez-Vicente, M., Poesen, J., Navas, A., and Gaspar, L. (2013). Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena, 102, 6273.CrossRefGoogle Scholar
Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A., and Arattano, M. (2009). Sediment transfer processes in two Alpine catchments of contrasting morphological settings. Journal of Hydrology, 364, 8898.CrossRefGoogle Scholar
Morche, D., Schmidt, K.-H., Heckmann, T., and Haas, F. (2007). Hydrology and geomorphic effects of a high-magnitude flood in an Alpine river. Geografiska Annaler A, 89(1), 519.CrossRefGoogle Scholar
Mueller, B. U. (1999). Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets. Geodinamica Acta, 12, 291301.CrossRefGoogle Scholar
O'Callaghan, J. F., and Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323344.CrossRefGoogle Scholar
Otto, J.-C., and Dikau, R. (2004). Gemorphologic system analysis of a high mountain valley in the Swiss Alps. Zeitschrift für Geomorphologie, 48, 323341.CrossRefGoogle Scholar
Poeppl, R. E., Keiler, M., von Elverfeldt, K., Zweimueller, I., and Glade, T. (2012). The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geografiska Annaler A, 94, 511529.CrossRefGoogle Scholar
Renard, K., Foster, G. R., Weessies, G. A., McCool, D. K., and Yodler, D. C., (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook, 703. Washington, DC: USDA.Google Scholar
Richards, K., (1993). Sediment delivery and the drainage network. In Beven, K. and Kirkby, M. J., eds., Channel Network Hydrology. Chichester: Wiley, pp. 221254.Google Scholar
Roehl, J. E., (1962). Sediment source areas, delivery ratios and influencing morphological factors. International Association of Hydrological Sciences, 59, 202213.Google Scholar
Schäuble, H., Marinoni, O., and Hinderer, M. (2008). A GIS-based method to calculate flow accumulation by considering dams and their specific operation time. Computers and Geosciences, 34, 635646.CrossRefGoogle Scholar
Schrott, L., Niederheide, A., Hankammer, M., Hufschmidt, G., and Dikau, R. (2002). Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). Zeitschrift für Geomorphologie, Supplement, 127, 175196.Google Scholar
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Sandercock, P. J., and Hooke, J. M. (2011). Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environment, 75, 239254.CrossRefGoogle Scholar
Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. Hydrobiologia, 494, 7182.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie, 52, 123148.CrossRefGoogle Scholar
Strasser, U., Marke, T., Sass, O., and Birk, S. (2013). John`s creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria). Environmental Earth Science, 69(2), 695705.CrossRefGoogle Scholar
Tarboton, D., (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33, 309319.CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209237.CrossRefGoogle Scholar
Walling, D. E., and Collins, A. L. (2008). The catchment sediment budget as a management tool. Environmental Science and Policy, 11, 136143.CrossRefGoogle Scholar
Warburton, J. (1993). Energetics of Alpine proglacial geomorphic processes. Transactions of the Institute of British Geographers, 18(2), 197206.CrossRefGoogle Scholar
Wischmeier, W. H., and Smith, D. D. (1978). Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. USDA Agriculture Handbook, 537. Washington: USDA.Google Scholar
Wohl, E. (2014). Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology, 216, 263282.CrossRefGoogle Scholar

References

Barsch, D., and Caine, N. (1984). The nature of mountain geomorphology. Mountain Research and Development, 4, 287298.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2012). The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Ongoing activities and selected key tasks for the coming years. Geomorphology, 167–168, 23.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie N.F., 52, Supplementary Issue 1, 123148.CrossRefGoogle Scholar
Slaymaker, O., and Embleton-Hamann, C. (2009). Mountains. In Slaymaker, O., Spencer, T., and Embleton-Hamann, C., eds., Geomorphology and Global Environmental Change. Cambridge: Cambridge University Press, pp. 3770.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×