Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Testing for Dynamo Action
Published online by Cambridge University Press: 11 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Summary
It is important to determine whether a cosmical magnetic field is a consequence of dynamo action or, alternatively, is a slowly decaying fossil field. Similarly, in numerical simulations of magnetohydrodynamic turbulence we should like to distinguish between a dynamo-generated magnetic field and one that is simply decaying, albeit slowly. Here certain criteria are presented that must be satisfied before any positive claims can be made for dynamo action.
INTRODUCTION
Given the existence of a naturally occurring magnetic field, be it astrophysical or geophysical, it is natural to ask whether the field is generated by dynamo action or if instead it is a fossil field, trapped in the body since its formation. In certain contexts it is possible to give a definitive answer. For example, the Ohmic diffusion time of the Earth's core is of the order of 10 years whereas paleomagnetic records show that the magnetic field of the Earth has existed for 109 years. Consequently, since the field has been maintained for so many Ohmic decay times it must be generated by some sort of dynamo process. For astrophysical bodies on the other hand, for which typically the Ohmic time is comparable to the lifetime of the body itself, it is not so straightforward to assert that a field is dynamo-generated. Of course, there may be other factors suggesting the origin of the field, but simply on the basis of the Ohmic decay time the issue often cannot be decided. What we would like therefore is a test to distinguish between these two possibilities.
- Type
- Chapter
- Information
- Solar and Planetary Dynamos , pp. 153 - 160Publisher: Cambridge University PressPrint publication year: 1994
- 1
- Cited by