from Part IV - Applications of Social Signal Processing
Published online by Cambridge University Press: 13 July 2017
Introduction
Teams are key components of organizations and, although complexity and scale are typical features of large institutions worldwide, much of the work is still implemented by small groups. The small-group meeting, where people discuss around the table, is pervasive and quintessential of collaborative work. For many years now, this setting has been studied in computing with the goal of developing methods that automatically analyze the interaction using both the spoken words and the nonverbal channels as information sources. The current literature offers the possibility of inferring key aspects of the interaction, ranging from personal traits to hierarchies and other relational constructs, which in turn can be used for a number of applications. Overall, this domain is rapidly evolving and studied in multiple subdisciplines in computing and engineering as well as the cognitive sciences.
We present a concise review of recent literature on computational analysis of face-toface small-group interaction. Our goal is to provide the reader with a quick pointer to work on analysis of conversational dynamics, verticality in groups, personality of group members, and characterization of groups as a whole, with a focus on nonverbal behavior as information source. The value of the nonverbal channel (including voice, face, and body) to infer high-level information about individuals has been documented at length in psychology and communication (Knapp & Hall, 2009) and is one of the main themes of this volume.
In the chapter, we include pointers to 100 publications appearing in a variety of venues between 2009 and 2013 (discussions about earlier work can be found e.g. in Gatica-Perez, 2009.) After a description of our Methodology (see section on Methodology) and a basic quantitative analysis of this body of literature (see section on the Analysis of Main Trends), we select a few works, due to the limited space, in each of the four aforementioned trends to illustrate the kind of research questions, computational approaches, and current performance available in the literature (see sections on Conversational Dynamics, Verticality, Personality, and Group Characterization). Taken together, the existing research on small-group analysis is diverse in terms of goals and studied scenarios, relies on state-of-the-art techniques for behavioral feature extraction to characterize group members from audio, visual, and other sensor sources, and is still largely using standard machine learning techniques as tools for computational inference of interaction-related variables of interest.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.