Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T19:34:03.503Z Has data issue: false hasContentIssue false

1 - STRUCTURAL PROPERTIES

Published online by Cambridge University Press:  05 May 2010

Jasprit Singh
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

INTRODUCTION

In this text we will discuss a variety of physical properties, which form the basis for intelligent devices. These properties are closely linked to the physical structure of the materials. The arrangements of the atoms/molecules determine important symmetries in the system that, in turn, influence the electronic and optical properties. For example, the presence or absence of inversion symmetry determines properties such as the piezoelectric effect used for sensors and ultrasonic applications. Ferroelectric materials depend upon special crystalline properties of ionic crystals. Valence band properties in semiconductors are determined by the cubic symmetry in the crystals.

In addition to the arrangement of atoms in crystals, it is also important to understand the nature of surfaces and interfaces. Many devices are based on phenomena that are unique to surfaces or interfaces. Finally, we have to realize that most materials are far from perfect crystals. Poly crystalline materials, amorphous materials, and materials with defects are also used in making smart devices.

In this chapter we will examine the structural properties of a variety of materials used for smart device applications. We will start with perfect crystals.

CRYSTALLINE MATERIALS

Almost all high-performance devices are based on crystalline materials. Although, as we will see later in the chapter, there are some devices that use low-cost amorphous or poly crystalline semiconductors, their performance is quite poor. Crystals are made up of identical building blocks, the block being an atom or a group of atoms.

Type
Chapter
Information
Smart Electronic Materials
Fundamentals and Applications
, pp. 1 - 38
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • STRUCTURAL PROPERTIES
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • STRUCTURAL PROPERTIES
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • STRUCTURAL PROPERTIES
  • Jasprit Singh, University of Michigan, Ann Arbor
  • Book: Smart Electronic Materials
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614439.003
Available formats
×