Book contents
- Frontmatter
- Contents
- Preface
- List of Symbols, Acronyms and Abbreviations
- 1 Introduction
- 2 Control systems techniques for small-signal dynamic performance analysis
- 3 State equations, eigen-analysis and applications
- 4 Small-signal models of synchronous generators, FACTS devices and the power system
- 5 Concepts in the tuning of power system stabilizers for a single machine system
- 6 Tuning of PSSs using methods based on Residues and the GEP transfer function
- 7 Introduction to the Tuning of Automatic Voltage Regulators
- 8 Types of Power System Stabilizers
- 9 Basic Concepts in the Tuning of PSSs in Multi-Machine Applications
- 10 Application of the PSS Tuning Concepts to a Multi-Machine Power System
- 11 Tuning of FACTS Device Stabilizers
- 12 The Concept, Theory, and Calculation of Modal Induced Torque Coefficients
- 13 Interactions between, and effectiveness of, PSSs and FDSs in a multi-machine power system
- 14 Coordination of PSSs and FDSs using Heuristic and Linear Programming Approaches
- Index
Preface
Published online by Cambridge University Press: 05 February 2016
- Frontmatter
- Contents
- Preface
- List of Symbols, Acronyms and Abbreviations
- 1 Introduction
- 2 Control systems techniques for small-signal dynamic performance analysis
- 3 State equations, eigen-analysis and applications
- 4 Small-signal models of synchronous generators, FACTS devices and the power system
- 5 Concepts in the tuning of power system stabilizers for a single machine system
- 6 Tuning of PSSs using methods based on Residues and the GEP transfer function
- 7 Introduction to the Tuning of Automatic Voltage Regulators
- 8 Types of Power System Stabilizers
- 9 Basic Concepts in the Tuning of PSSs in Multi-Machine Applications
- 10 Application of the PSS Tuning Concepts to a Multi-Machine Power System
- 11 Tuning of FACTS Device Stabilizers
- 12 The Concept, Theory, and Calculation of Modal Induced Torque Coefficients
- 13 Interactions between, and effectiveness of, PSSs and FDSs in a multi-machine power system
- 14 Coordination of PSSs and FDSs using Heuristic and Linear Programming Approaches
- Index
Summary
We have written this book in the hope that the following engineers, or potential engineers, will benefit from it:
• Recent graduates in electrical engineering who need to understand the tools and techniques currently available in the analysis of small-signal dynamic performance and design.
• Practicing electrical engineers who need to understand the significance of more recent developments and techniques in the field of small-signal dynamic performance.
• Postgraduate students in electrical engineering who need to understand current developments in the field and the need to orient their research to achieve practical, useful outcomes.
• Undergraduate electrical engineering students in courses oriented towards electric power engineering in which there is an introductory subject in power system dynamics (for access to basic material).
• Managerial staff with responsibilities in power system planning, and system stability and control.
An aim of the book is to provide a bridge between the mathematical/theoretical and physical/ practical significance to the topic. Some of the fundamental background relevant to the main topics of the book is presented in the early chapters so that the necessary material is readily available to the reader in the one book.
• Because the emphasis is on controllers for generators, for FACTS and other devices, the pertinent topics in classical control and eigenanalysis techniques are provided in Chapters 2 and 3.
• The authors have covered in Chapter 4 a wide range of small-signal generator models, equations, and associated material. Third- to eighth-order generator models in their coupled-circuit and operational parameter versions are described. The following features are also included in the generator models: (i) the ‘classical’ and ‘exact’ definitions of the operational parameters; (ii) the various approaches to the modelling of saturation; (iii) the formulation of the differential-algebraic generator equations to exploit sparsity. These models and features are employed in the Mudpack software package. Small-signal equations and models of FACTS devices employed in the software are also described. Devices covered include SVCs, STATCOMS, Thyristor Controlled Series Compensators, HVDC links with Voltage Source Converters or with line-commutated converters.
• In Chapters 5, 9 and 10 there is an emphasis on practical robust techniques, based on the P-Vr method, for the design of robust stabilizers for generators in multi-machine systems.
- Type
- Chapter
- Information
- Publisher: The University of Adelaide PressPrint publication year: 2015