Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T14:30:55.872Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 November 2018

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Slenderness , pp. 251 - 273
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

Abouabdillah, D. (1983) Topologies linéaires minimales sur un groupe abélien, in Abelian Group Theory, Proceedings of the Conference, Honolulu, Hawaii, 1982, Lect. Notes Math., 1006, 582–588, Berlin: Springer Verlag.Google Scholar
Alexandroff, P. S. & Urysohn, P. S. (1923) Une condition nécessaire et suffisante pour qu’une class (L) doit une class (B), C. R. Acad. Sci. Paris, 177, 12741276.Google Scholar
Allouch, D. (1969) Modules Maigres, These, Faculté des Sciences de Montpellier, Universite de Montpellier, Publication No.61, 1969/70.Google Scholar
Allouch, D. (1971) Les modules maigres, C. R. Acad. Sci. Paris Sér. A Math., 272, 517519.Google Scholar
Aronszajn, N. (1938) Quelques remarques sur les relations entre les notions d’écart régulier at de distance, Bull. Amer. Math. Soc., 44, No.10, 653657.Google Scholar
Atiyah, M. F. & MacDonald, I. G. (1969) Introduction to Commutative Algebra, Reading, MA: Addison-Wesley.Google Scholar
Azumaya, G. (1950) On maximally central algebras, Nagoya Math. J., 2, 119150.Google Scholar
Baer, R. (1958) Die Torsionsuntergruppe einer abelschen Gruppe, Math. Ann., 135, 219234.Google Scholar
Balcerzyk, S. (1957) On algebraically compact groups of I. Kaplansky, Fund. Math., 44, 9193.Google Scholar
Balcerzyk, S. (1959) On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci., 7, 141142.Google Scholar
Ballet, B. (1976) Topologies lineaires et modules artiniens, J. Algebra, 41, 365397.Google Scholar
Banach, S. (1923) Sur le problème de la mesure, Fund. Math., 4, 733.Google Scholar
Banach, S. (1929) Sur les fonctionelles linéaires. II Studia Math., 1, 223239.Google Scholar
Banach, S. (1930) Über additive Massfunktionen in abstrakten Mengen, Fund. Math., 15, 97101.Google Scholar
Banach, S. (1932) Théorie des opérations linéaires, Monogr. Mat. 1, Warszaw: Subwencji Funduszu Narodnej.Google Scholar
Banach, S. & Kuratowski, K. (1929) Sur une généralisation du probléme de la mesure, Fund. Math., 15, 127131.Google Scholar
Banach, S. & Tarski, A. (1924) Sur la décomposition des ensembles de points et parties respectivement congruentes, Fund. Math., 6, 244277.Google Scholar
Barucci, V. & Dobbs, D. E. (1984) On chain conditions in integral domains, Canad. Math. Bull., 27, No.3, 351359.Google Scholar
Bashir, R. E. & Kepka, T. (1996) On when small semiprime rings are slender, Comm. Alg., 24, No.5, 15751580.Google Scholar
Bashir, R. E. & Kepka, T. (1997) On when commutative noetherian rings are slender, Comm. Alg., 25(1997), 25852591.Google Scholar
Bashir, R. E. & Kepka, T. (1998) Modules commuting (via Hom) with some limits, Fund. Math., 155, 271292.Google Scholar
Bergman, G. (2015) An Invitation to General Algebra and Universal Constructions, New York: Springer Verlag.Google Scholar
Bergman, G. & Dimitric, R. (1996) Correspondence 15–17 March 1996, Berkeley, CA.Google Scholar
Bergman, G. & Dimitric, R. (1998) Private communication, March 5, 1998, Bergman’s note likely originated in 1992, Berkeley.Google Scholar
Bergman, G. & Dimitric, R. (2009) Correspondence November 11, 2009, Berkeley, CA.Google Scholar
Bergman, G. & Dimitric, R. (2016) Correspondence September 2016.Google Scholar
Birkhoff, G. (1940) Lattice Theory, American Mathematical Society Colloquium Publ., Vol. 25, New York: American Mathematical Society.Google Scholar
Bourbaki, N. (1956) Théorie des ensembles, Livre I, Ch. III. Paris: Hermann.Google Scholar
Bourbaki, N. (1961a) Algèbre commutative, Ch. 1, 2, 3, 4, Paris: Hermann.Google Scholar
Bourbaki, N. (1961b) Topologie générale, Ch. 1, 2, 3rd edn, Paris: Hermann.Google Scholar
Bourbaki, N. (1963) Intégration, Livre II, Ch. 8, Paris: Hermann.Google Scholar
Boyer, D. & Mader, A. (1980) Functorial topologies on abelian groups, Rocky Mountain J. Math., 10, No.4, 695708.Google Scholar
Braconnier, J. (1948) Spectres d’espaces et de groupes topologiques, Portugaliae Math., 7, No.2, 93111.Google Scholar
Braun, A. (1990) Completions of Noetherian P.I. Rings, J. Algebra, 133, No.2, 340– 350.Google Scholar
Buchsbaum, D. A. (1955) Exact categories and duality, Trans. Amer. Math. Soc., 80, No.1, 134.Google Scholar
Bushaw, D. (1963) Elements of General Topology, New York: John Wiley & Sons.Google Scholar
Cantor, G. (1878) Ein Beitrag zur Manningfaltigkeitslehre, J. reine angew. Math., 84, 242258.Google Scholar
Cartan, H. P. (1937a) Théorie des filtres, C. R. Acad. Sci., Paris, 205, 595598.Google Scholar
Cartan, H. P. (1937b) Filtres et ultrafiltres, C. R. Acad. Sci., Paris, 205, 777779.Google Scholar
Cartan, H. P. (1940, 1942, 1947, 1948, 1949) Topologie génerále, Actualités Sci. Ind., 858, 916, 1029, 1045, 1084, Paris: Hermann.Google Scholar
Cartan, H. & Eilenberg, S. (1956) Homological Algebra, Princeton, NJ: Princeton University Press.Google Scholar
Chang, C. C. & Morel, A. C. (1958) On closure under direct product, J. Symb. Logic, 23, 149154.Google Scholar
Charles, B. (1964) Méthodes topologiques en théorie des groupes abéliens, in Proceedings of the Colloquium, Conference Abelian Groups, Tihany (Hungary), 1963, ed. Fuchs, L. and Schmidt, E. T., 29–42, Budapest: Akadémiai Kiadó.Google Scholar
Chevalley, C. (1936) Généralisation de la théorie du corps de classes pour les extensions infinies, J. Math., (9), 15, 359371.Google Scholar
Chevalley, C. (1943) On the theory of local rings, Ann. Math., 44, No.4, 609708.CrossRefGoogle Scholar
Chittenden, E. W. (1927) On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc., 33, No.1, 1334.Google Scholar
Clifford, A. H. & Preston, G. B. (1961) The Algebraic Theory of Semigroups, Providence, RI: American Mathematical Society.Google Scholar
Cohen, I. S. (1946) On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59, No.1, 54106.Google Scholar
Cohen, P. J. (1963) The independence of the Continuum Hypothesis. I, Proc. Nat. Acad. Sci. (USA), 50, 11431148.Google Scholar
Cohen, P. J. (1964) The independence of the Continuum Hypothesis. II, Proc. Nat. Acad. Sci. (USA), 51, 105110.Google Scholar
Cohn, P. M. (1959) On the free product of associative rings, Math. Z., 71, 380398.Google Scholar
Colmez, P. & Serre, J.-P. (2001) Correspondance Grothendieck–Serre, Paris: Société Mathématique de France. [Translation into English: (2004) Grothendieck–Serre Correspondence, ed. Pierre Colmez and Jean-Pierre Serre, trans. by Catriona Maclean with the assistance of Leila Schneps, Jean-Pierre Serre, Providence, RI: American Mathematical Society.]Google Scholar
D’Este, G. (1980) The ⊕c-topology on abelian p-groups, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4)7, No.2, 241256.Google Scholar
van Dantzig, D. (1932) Zur topologischen Algebra I. Komplettierungstheorie, Math. Ann., 107, 587626.Google Scholar
Dauns, J. (1994) Modules and Rings, New York: Cambridge University Press.Google Scholar
Davis, M. & Dimitric, R. (2000) E-mail correspondence, April–May 2000.Google Scholar
De Marco, G. & Orsatti, A. (1974) Complete linear topologies on abelian groups, Symposia Math. 13, 153161.Google Scholar
Dedekind, R. (1892) Stetigkeit und irrationale Zahlen, Braunschweig. [Authorized translation: (1901) Essays on the Theory of Numbers, Chicago, IL: Open Court.]Google Scholar
Dieudonné, J. (1967) Topics in Local Algebra, Notre Dame: University of Notre Dame Press.Google Scholar
Dimitric, R. (1980) Relativity in Abelian groups, MS thesis, University of Belgrade [Original: Relativnost u abelovim grupama].Google Scholar
Dimitric, R. (1983a) Slender modules over domains, Commun. Algebra, 11, No.15, 16851700.Google Scholar
Dimitric, R. (1983b) Slenderness in Abelian categories, in Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, 1982/83, Lect. Notes Math., 1006, 375–383, Berlin: Springer Verlag.Google Scholar
Dimitric, R. (1983c) Slenderness in Abelian Categories, PhD dissertation, Tulane University, New Orleans.Google Scholar
Dimitric, R. (1984) On pure submodules of free modules and κ-free modules, Abelian Groups and Modules (Udine, 1984), CISM Courses and Lectures, 287, 373381, Vienna: Springer Verlag.Google Scholar
Dimitric, R. (1986) On coslender groups, Glas. Mat. Ser. III, 21 (41), 327329.Google Scholar
Dimitric, R. (1987) On chains of free modules over valuation domains, Czechoslovak Math. J., 37 (112), 400406.Google Scholar
Dimitric, R. (2002) Zentralblatt Review No. 0986.01019 [of Colmez & Serre (2001)].Google Scholar
Dimitric, R. (2003) Zentralblatt Review No. DE017772498 [of Neeman (2002)].Google Scholar
Dimitric, R. (2004a) A note on surjective inverse systems, Int. J. Pure Appl. Math., 10, No.3, 349356.Google Scholar
Dimitric, R. (2004b) Algebraic compactness of ∏ Mα / ⊕ Mα , Int. J. Pure Appl. Math., 14, No.1, 6166.Google Scholar
Dimitric, R. (2004c) Trees, inverse systems, and valuated vector spaces, Acta Math. Univ. Ostraviensis, 12, No.1, 1922.Google Scholar
Dimitric, R. & Fuchs, L. (2014) Email correspondence of March 2014.Google Scholar
Dimitric, R. & Jensen, C. U. (2004) Private communication, March 5, 2004.Google Scholar
Dimitric, R. & Marks, G. (1997) Private communication, April 11, 1997, Berkeley, CA. (2000) Email correspondence, May 2000.Google Scholar
Dimitric, R. & Winkelmann, J. (1997) Private communication, May 1997, October 2016.Google Scholar
Drake, F. R. (1974) Set Theory. An Introduction to Large Cardinals. Studies in Logic and the Foundations of Mathematics, 76, Amsterdam, London: North-Holland (New York: American Elsevier).Google Scholar
Dubrovin, B. A., Fomenko, A. T. & Novikov, S. P. (1979) Modern Geometry – Methods and Applications, (3 vols.: 1984, 1985, 1990) New York: Springer, transl. R. G. Burns. [Original: Б. A Дубpовин, C. П. Hовиков, A. T. Φомeнко: Coɞpeмeннaя ƨeoмempuя, Mоcквa: Haукa 1979].Google Scholar
Dugac, P. (1984) Histoire des espaces complets, Revue d’Histoire des Sci., 37, No.1, 328.Google Scholar
Dugas, M. & Göbel, R. (1979) Algebraisch kompakte Faktorgruppen, J. reine angew. Math., 307 /308, 341352.Google Scholar
Eda, K. (1983) On a Boolean power of a torsion free abelian group, J. Algebra, 82, No.1, 8493.Google Scholar
Eda, K. (1992) Free σ-products and noncommutatively slender groups. J. Algebra, 148, No.1, 243263.Google Scholar
Ehrenfeucht, A. & Łoś, J. (1954) Sur les produits cartésiens des groupes cycliques infinis, Bull. Acad. Polon. Sci. Cl.III, 2, No.6, 261263.Google Scholar
Eilenberg, S. & Mac Lane, S. (1945) General theory of natural equivalences. Trans. Amer. Math. Soc., 58, No.2, 231294.Google Scholar
Eilenberg, S. & Steenrod, N. E. (1952) Foundations of Algebraic Topology, Princeton, NJ: Princeton University Press.Google Scholar
Eisenbud, D. (1994) Commutative Algebra, New York: Springer-Verlag.Google Scholar
Eklof, P. C. (1977) Ultraproducts for algebraists, Handbook of Mathematical Logic, 105–137, Amsterdam, New York, Oxford: North-Holland.Google Scholar
Eklof, P. C. and Huber, M. (1979) Abelian group extensions and the axiom of constructibility, Comment. Math. Helvetici, 54, 440457.Google Scholar
Eklof, P. C. & Mekler, A. H. (1990) Almost Free Modules. Set Theoretic Methods, Amsterdam: North-Holland.Google Scholar
Emmanouil, I. (1996) Mittag-Leffler condition and the vanishing of (1), Topology, 35, No.1, 267271.Google Scholar
Enochs, E. (1984) Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc., 92, No.2, 179184.Google Scholar
Erdős, P. & Hajnal, A. (1961) On a property of families of sets, Acta Math. Acad. Sci. Hungaricae, 12, 87123.Google Scholar
Ershov, Yu. L. (1978) Algebraically compact groups, Algebra and Logic, 17, No.6, 444– 449 (1979). [Aлгeбpaичecки компaктныe гpуппы, Aлƨeбpa u лoƨuкa, 17(1978), No.6, 684–692, 746–747.]Google Scholar
Facchini, A. (1985) Algebraically compact modules, Acta Univ. Carolinae Math. Phys., 26, No.2, 2737.Google Scholar
Facchini, A. (1986) Review MR 86h:13008 of Fuchs & Salce (1985).Google Scholar
Fieldhouse, D. J. (1969) Pure theories, Math. Ann., 184, 118.Google Scholar
Fieldhouse, D. J. (1975) Absolute purity, Canad. J. Math., 27, 610.Google Scholar
Fisher, E. R. (1977) Abelian structures. I., in Abelian Group Theory: Proceedings of the 2nd New Mexico State University Conference, Las Cruces, 1976, Lect. Notes Math., 616, 270–322, Berlin: Springer Verlag.Google Scholar
Franzen, B. (1981) Algebraic compactness of filter quotients, in Abelian Group Theory: Proceedings of the Oberwolfach Conference, 1981, Lect. Notes Math., 874, 228–241, New York: Springer-Verlag.Google Scholar
Frayne, T. E., Morel, A. C. & Scott, D. S. (1962) Reduced direct products, Fund. Math., 51, 195228.Google Scholar
Frayne, T. E. & Scott, D. S. (1958) Model-theoretical properties of reduced products, Not. Amer. Math. Soc., 5, 675.Google Scholar
Frayne, T. E., Scott, D. S. & Tarski, A. (1958) Reduced products, Not., Amer. Math. Soc., 5, 673674.Google Scholar
Freyd, P. (1960) Functor Theory, PhD dissertation, Princeton University.Google Scholar
Freyd, P. (1964) Abelian Categories. An Introduction to the Theory of Functors, New York; Evanston; London: Harper & Row.Google Scholar
Frink, A. H. (1937) Distance functions and the metrization problem, Bull. Amer. Math. Soc., 43, No.2, 133142.Google Scholar
Fuchs, L. (1958) Abelian Groups, Budapest: Publishing House of the Hungarian Academy of Science. [Reprinted by New York: Pergamon Press in 1960].Google Scholar
Fuchs, L. (1959) Notes on abelian groups, I, Ann. Univ. Sci. Budapest, 2, 523.Google Scholar
Fuchs, L. (1960) Notes on abelian groups, II, Acta Math. Acad. Sci. Hungar., 11, 117125.Google Scholar
Fuchs, L. (1963) On algebraically compact abelian groups, J. Natur. Sci. Math., 3, 7382.Google Scholar
Fuchs, L. (1967) Algebraically compact modules over Noetherian rings, Indian J. Math., 9, No.2, 357374.Google Scholar
Fuchs, L. (1968) Note on purity and algebraic compactness for modules, Studies in Abelian Groups (Symposium, Montpellier, 1967), 121–129, Berlin: Springer-Verlag.Google Scholar
Fuchs, L. (1969) Torsion preradicals and ascending Loewy series of modules, J. reine angew. Math., 239 /240, 169179.Google Scholar
Fuchs, L. (1970) Infinite Abelian Groups, I, New York and London: Academic Press.Google Scholar
Fuchs, L. (1973) Infinite Abelian Groups, II, New York and London: Academic Press.Google Scholar
Fuchs, L. & Salce, L. (1985) Modules over Valuation Domains, New York and Basel: Marcel Dekker.Google Scholar
Fuchs, L. & Salce, L. (2001) Modules over Non-Noetherian Domains, Providence, RI: American Mathematical Society.Google Scholar
Gabriel, P. (1962) Des catégories abbéliennes, Bull. Soc. Math. France, 90, 323448.Google Scholar
Gacsályi, S. (1955) On pure subgroups and direct summands of Abelian groups, Publ. Math. Debrecen, 4, Nos.1–2, 8992.Google Scholar
Gelfand, I. & Naumark, M. (1943) On the imbedding of normed rings into the ring of operators in Hilbert space, Recueil Mathématique / Mat. Sbornik, N.S., 12 (54), No.2, 197213.Google Scholar
Generalov, A. I. (1986) Inductively closed proper classes over bounded hnp-rings. Algebra and Logic, 25, No.4, 239253. [Индуктивно зaмкнутыe cоб-cтвeнныe клaccы нaд огpaничeнными hnp-кольцaми, Aлƨeбpa u лoƨuкa, 25, N.4, 384–404, 494.]Google Scholar
Gerstner, O. (1974) Algebraische Kompaktheit bei Faktorgruppen von Gruppen ganzzahliger Abbildungen, Manuscripta Math., 11, 103109.Google Scholar
Gerstner, O., Kaup, L. & Weidner, H.-G. (1969) Whitehead-Modulen abzählbaren Ranges über Hauptidealringen, Arch. Math., 20, 503514.Google Scholar
Gillman, L. & Jerison, M. (1960) Rings of Continuous Fractions, New York: Springer-Verlag.Google Scholar
Göbel, R. (1975) On Stout and Slender Groups, J. Algebra, 359, 3955.Google Scholar
Goblot, R. (1970) Sur les dérivés de certaines limites projectives: Applications aux modules. Bull. Soc. Math. France, 2nd series, 94, 251255.Google Scholar
Gödel, K. (1940) The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory. Annals of Mathematics Studies, 3, Princeton, NJ: Princeton University Press.Google Scholar
Godement, R. (1958) Topologie algebrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, 13, Paris: Hermann.Google Scholar
Golan, J. (1987) Linear Topologies on a Ring: An Overview, Essex, England: Longman Scientific & Technical; New York: John Wiley.Google Scholar
Graev, M. I. (1948) Free topological groups, Izvestiya Akad. Nauk SSSR, Ser. Mat., AMS Translations, Series One, 35 (1951). [Γpaeв, M.И.: Cвободныe топологичecкиe гpуппы, Изɞ. Aкa∂. Haук CCCP, cepuя мameм., 12(1948), 279–324.]Google Scholar
Graev, M. I. (1950) Theory of topological groups. I. Norms and metrics on groups. Complete groups. Free topological groups. Uspehi Matem. Nauk (N.S.), 5, No.2(36), 356. [Γpaeв, M.И. (1950) Teоpия топологичecкиx гpупп И. Hоpмы и мeтpикa нa гpуппax. Полныe гpуппы. Cвободныe топологичecкиe гpуппы, Уcnexu Mam. Haук, 5, No.2(36), 3–56].Google Scholar
Grothendieck, A. (1950) Sur la complétion du dual d’un espace vectoriel localement convexe, C. R. Acad. Sci. Paris, 230, 605606.Google Scholar
Grothendieck, A. (1957) Sur quelques points d’algèbre homologique, Tohôku Math. J., 9, No.3, 119221.Google Scholar
Grothendieck, A. (1961) Éléments de géométrie algébrique, III. Étude cohomologique des faisceaux coherents. I, IHES Publications Math., 11, 343423 (1– 79) (167 pp).Google Scholar
Grothendieck, A. (1964) Espaces vectoriels topologiques, 3rd edn, Sâo Paulo: Instituto de Matematica.Google Scholar
Grothendieck, A. (1965) Éléments de géométrie algébrique, Ètude locale des schemas et des morphismes de schemas (Seconde partie), Publ. Math. Inst. Hautes Etud. Sci., 24, 1231.Google Scholar
Grothendieck, A. & Dieudonneé, J. (1964) Éléments de géométrie algébrique, IV: Ètude locale des schemas et des morphismes de schemas (Premiere partie), Publ. Math. Inst. Hautes Etud. Sci., 20, 101355.Google Scholar
Hardy, G. H. (1940) Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Cambridge: Cambridge University Press.Google Scholar
Harrison, D. K. (1959) Infinite abelian groups and homological methods, Ann. Math., 69, 366391.Google Scholar
Hartman, S. & Mycielski, J. (1958) On the imbedding of topological groups into connected topological groups, Colloq. Math., 5, 167169.Google Scholar
Hausdorff, F. (1914) Grundzüge der Mengenlehre. Leipzig: De Gruyter (reprint New York: Chelsea, 1965).Google Scholar
Heine, H. E. (1872) Die Elemente der Functionenlehre, J. reine angew. Math., 74, 172188.Google Scholar
Heinlein, G. (1971) Vollreflexive Ringe und schlanke Moduln, dissertation, Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.Google Scholar
Heitmann, R. C. (1993) Characterization of completions of unique factorization domains, Trans. Amer. Math. Soc., 337, No.1, 379387.Google Scholar
Henkin, L. (1950) A problem on inverse mapping systems, Proc. Amer. Math. Soc., 1, 224225.Google Scholar
Hensel, K. (1897) Über die Fundamentalgleichung und die ausserwesentlichen Diskriminantentheiler eines algebraischen Körpers, Gött. Nachr., 254–260.Google Scholar
Hensel, K. (1905) Über die arithmetische Eigenschaften der Algebraischen und Transzedenten Zahlen, Jahresber. D.M.V., 14, 545558.Google Scholar
Hensel, K. (1908) Theorie der Algebraischen Zahlen, Leipzig: Teubner.Google Scholar
Heron, A. E. P. (1960) Problems in homological algebra, Doctoral dissertation, Oxford University.Google Scholar
Hinrichs, L. (1964) Integer topologies, Proc. Amer. Math. Soc., 15, No.6, 991995.Google Scholar
Hrbacek, K. & Jech, T. (1999) Introduction to Set Theory, 3rd edn, New York, Basel: Marcel Dekker.Google Scholar
Hulanicki, A. (1962a) On algebraically compact groups, Bull. Acad. Polon. Sci. Math., 10, No.2, 7175.Google Scholar
Hulanicki, A. (1962b) The structure of the factor group of an unrestricted sum by the restricted sum of abelian groups, Bull. Acad. Polon. Sci., 10, 7780.Google Scholar
Hulanicki, A. & Newman, M. F. (1963) Existence of unrestricted direct products with one amalgamated subgroup, J. Lond. Math. Soc., 38, 169175; Corrigendum: J. Lond. Math. Soc., 39(1964), 672.Google Scholar
Hutchins, H. C. (1981) Examples of Commutative Rings, Passaic, NJ: Polygonal.Google Scholar
Iwamura, T. (1944) A lemma on directed sets, Zenkoku Shijo Sugaku Danwakai, 262, 107111 (in Japanese).Google Scholar
Jech, T. J. (2006) Set Theory, Berlin; Heidelberg; New York: Springer-Verlag.Google Scholar
Jensen, C. U. (1972) Les Foncteurs Dérivés de et leurs Applications en Théorie des Modules, Lect. Notes Math., 254, Berlin: Springer-Verlag.Google Scholar
Jensen, C. U., Jøndrup, S. & Thorup, A. (2017) Slender domains and compact domains, Forum Math., 29, No.4, 893904.Google Scholar
Jensen, C. U. & Lenzing, H. (1989) Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules. New York: Gordon and Breach.Google Scholar
Jensen, C. U. & Zimmermann-Huisgen, B. (1989) Algebraic compactness of ultraproducts and representation type, Pacific J. Math., 139, No.2, 251265.Google Scholar
Jordan, D. A. (1988) Normalizing sequences and completions of non-commutative Noetherian rings, Bull. London Math. Soc., 20, No.3 228234.Google Scholar
Kakutani, S. (1936) Über die Metrisation der topologischen Gruppen, Proc. Imp. Acad. Japan, 12, 8284.Google Scholar
van Kampen, E. R. (1934) Locally compact Abelian groups, Proc. Nat. Acad. Sci. USA., 20, No.7 (July), 434436.Google Scholar
van Kampen, E. R. (1935) Locally bicompact abelian groups and their character groups, Ann. Math., 36, No.2, 448463.Google Scholar
Kan, D. M. (1958) Adjoint functors, Trans. Amer. Math. Soc., 87, No.2, 294329.Google Scholar
Kaplansky, I. (1947) Topological rings, Amer. J. Math., 69, 153183.Google Scholar
Kaplansky, I. (1948) Topological rings, Bull. Amer. Math. Soc., 45, 809826.Google Scholar
Kaplansky, I. (1952) Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72, 327340.Google Scholar
Kaplansky, I. (1954) Infinite Abelian Groups, Ann Arbor, MI: University of Michigan Press.Google Scholar
Kaplansky, I. (1974) Commutative Rings, Chicago, IL: University of Chicago Press.Google Scholar
Kashiwara, M. (1983) Systems of Microdifferential Equations, Progress in Mathematics, 34, Boston: Birkhäuser.Google Scholar
Kashiwara, M. & Schapira, P. (1990) Sheaves on Manifolds. With a Short History “Les débuts de la théorie des faisceaux”, by Houzel, Christian, Berlin: Springer Verlag.Google Scholar
Kaup, L. & Keane, M. (1969) Induktive Limiten endlich erzeugter freier Moduln, Manuscripta Math., 1, No.1, 921.Google Scholar
Keisler, H. J. (1961) Ultraproducts and elementary classes, Indag. Math., 23, No.5, 477– 495.Google Scholar
Keisler, H. J. (1963) Limit ultrapowers, Trans. Amer. Math. Soc., 107, No.3, 382– 408.CrossRefGoogle Scholar
Kelley, J. L. (1955) General Topology, New York: Springer-Verlag.Google Scholar
Kertész, A. (1962) On multimodules, Arch. Math., 13, 267274.Google Scholar
Kertész, A. (1987) Lectures on Artinian Rings, Budapest: Akadémiai Kiadó.Google Scholar
Kertész, A. & Szele, T. (1953) On the existence of non-discrete topologies in infinite abelian groups, Publ. Math. Debrecen, 3, 187189.Google Scholar
Kochen, S. (1961) Ultraproducts in the theory of models, Ann. Math., 74, No.2, 221– 261.Google Scholar
Kolmogorov, A. (1934) Zur Normierbarkeit eines algemeinen topologischen linearen Raumes, Studia Math., 5, 2933.Google Scholar
Köthe, G. (1983) Topological Vector Spaces I, Berlin: Springer-Verlag. [Translation by D. J. H. Garling of Topologische Lineare Räume I, 1966. Grundlehren der mathematischen Wissenschaften, Vol. 107].Google Scholar
Krull, W. (1932) Allgemeine Bewertungstheorie, J. reine angew. Math., 167, 160196.Google Scholar
Krull, W. (1938a) Beiträge zur Arithmetik kommutativer Integritätsbereiche. V. Potenzreihenringe, Math. Zeitschrift, 43, 768782.Google Scholar
Krull, W. (1938b) Dimensionstheorie in Stellenringen, J. reine angew. Math., 179, No.4, 204226.Google Scholar
Kulikov, L. Ya. (1941) On a theory of Abelian groups of arbitrary cardinality. Recueil math., Moscou (Mat. Sbornik), 9 (51), No.1, 165181. [К тeоpии aбeлeвыx гpупп пpоизвольной мошноcти, Mam. Cбopнuк, 9(51), N.1, 165–181.]Google Scholar
Kuratowski, K. & Mostowski, A. (1967/68) Set Theory. Amsterdam: North-Holland; Warszawa: Państwowe Wydawnictwo Naukove.Google Scholar
Kurepa, -D. (1951) Set Theory [Original: Teorija skupova], Zagreb: Školska knjiga.Google Scholar
Kurepa, -D. (1976) Genesis of uniform spaces, Math. Balkanica, 6, 99106.Google Scholar
Kurosh, A. G. (1932) Zur Zerlegung unendlicher Gruppen, Math. Ann., 106, 107113.Google Scholar
Kurosh, A. G. (1965) Lectures on General Algebra, New York: Chelsea. [trans. by K. A. Hirsch of A. Γ. Куpош, Лeкций по обшeи aлгeбpe, 1960].Google Scholar
Lady, E. L. (1973) Slender rings and modules, Pacific J. Math., 49, No.2, 397406.Google Scholar
Lang, S. (1971) Algebra, Reading, MA: Addison-Wesley.Google Scholar
Laradji, A. (1993a) α-compactness of reduced products and filter quotients, Manuscripta Math., 81, 283297.Google Scholar
Laradji, A. (1993b) A short algebraic proof of a theorem of Warfield, Mathematika, 40, 275277.Google Scholar
Laradji, A. (1998) On a weak form of equational compactness, Algebra Univers., 39, 7180.Google Scholar
Laudal, O. A. (1965) Sur les limites projectives et inductives, Ann. Sci. Éc. Norm. Super. 3 series, 82, No.2, 241296.Google Scholar
Laudal, O. A. (1968) Projective systems on trees and valuation theory, Canad. J. Math., 20, 9841000.Google Scholar
Lawvere, F. W. (1964) An elementary theory of the category of sets, Proc. Nat. Acad. Sci. USA, 52, 15061511.Google Scholar
Lazard, D. (1969) Autour de la platitude, Thèse Sc. Math., Paris, Bull. Soc. Math. France, 97, No.1, 81128.Google Scholar
Lebesgue, H. (1902) Intégrale, longueur, aire, Ann. Mat. Pur. Appl., Ser.3, 7, 231– 359.Google Scholar
Lebesgue, H. (1904) Leçons sur l’intégration et la recherche des fonctions primitives. Paris: Gauthier-Villars.Google Scholar
Van Leeuwen, L. C. A. (1969) On torsion-free cotorsion groups, Indag. Math., 31, 388393.Google Scholar
Lefschetz, S. (1942) Algebraic topology, Colloq. Publ., 27, New York: American Mathematical Society.Google Scholar
Lenzing, H. (1968) Direkte Produkte von freien Moduln, Math. Z., 106, 206212.Google Scholar
Leptin, H. (1955) Linear kompakte Moduln und Ringe, Math. Z., 62, 241267.Google Scholar
Leptin, H. (1957) Linear kompakte Moduln und Ringe, II. Math. Z., 66, 289327.Google Scholar
Leray, J. (1945a) Sur la forme des espaces topologiques et sur les points fixes des représentations (Première partie d’un cours de topologie algébrique professé en captivité), J. Math. Pures Appl. 24, 95167.Google Scholar
Leray, J. (1945b) Sur la position d’un ensemble fermé des points d’un espace topologique (Deuxième partie d’un cours de topologie algébrique professé en captivité), J. Math. Pures Appl. 24, 169199.Google Scholar
Leray, J. (1945c) Sur les équations et les transformations (Troisième partie d’un cours de topologie algébrique professé en captivité), J. Math. Pures Appl. 24, 201248.Google Scholar
Łoś, J. M. (1954) On the complete direct sum of countable abelian groups, Publ. Math., 3, Nos.3–4, 269272.Google Scholar
Łoś, J. M. (1955) Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, in Mathematical Interpretation of Formal Systems, Studies in Logic, 98–113, Amsterdam: North-Holland.Google Scholar
Łoś, J. M. (1956/7) Abelian groups that are direct summands of every Abelian group which contains them as pure subgroups, Bull. Acad. Polon. Sci., Cl.III 4(1956), 73; Fund. Math., 44(1957), 84–90.Google Scholar
Łoś, J. M. (1959a) Linear equations and pure subgroups, Bull. Acad. Polon. Sci., Sér. Math., 7, No.1, 1318.Google Scholar
Łoś, J. M. (1959b) Generalized limits in algebraically compact groups Bull. Acad. Polon. Sci. Sér Math., 7, No.1, 1921.Google Scholar
Lubkin, S. (1960) Imbedding of abelian categories. Trans. Amer. Math. Soc., 97, No.3, 410417.Google Scholar
Mac Lane, S. (1948) Groups, categories, and duality, Proc. Nat. Acad. Sci. USA, 34, 263267.Google Scholar
Mac Lane, S. (1950) Duality for groups, Bull. Amer. Math. Soc., 56, 485516.Google Scholar
Mac Lane, S. (1963) Homology, Berlin, Göttingen, Heidelberg: Springer-Verlag.Google Scholar
Mac Lane, S. (1971a) Categorical algebra and set-theoretic foundations, Proc. Sympos. Pure Math., 13, No.1, 231240.Google Scholar
Mac Lane, S. (1971b) Categories for the Working Mathematician, New York, Heidelberg, Berlin: Springer-Verlag.Google Scholar
MacNeille, H. M. (1936) Extensions of Partially Ordered Sets, Doctoral dissertation, Harvard University, 1935. Published in Proc. Natl. Acad. Sci. USA, 22, 4550.Google Scholar
MacNeille, H. M. (1937) Partially ordered sets, Trans. Amer. Math. Soc., 42, No.3, 416– 460.Google Scholar
Mader, A. (1967) A characterization of completions of direct sums of cyclic groups, Bull. Acad. Polon. Sci. Sér. Math., 15, No.4, 231233.Google Scholar
Mader, A. (1981a) Exact sequences of completions of abelian groups with linear topology, Houston J. Math., 7, No.1, 8395.Google Scholar
Mader, A. (1981b) Basic concepts of functorial topologies, Abelian Group Theory: Proceedings of the Oberwolfach Conference 1981, Lect. Notes Math., 874, 251271.CrossRefGoogle Scholar
Mader, A. (1982) Duality and completions of linearly topologized modules. Math. Z., 179, 325335.CrossRefGoogle Scholar
Mader, A. (1983a) The ⊕c-topology is not completable, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4)10, No.4, 579586.Google Scholar
Mader, A. (1983b) Completions via duality, in Abelian Group Theory: Proceedings of the conference at Honolulu, Hawaii, 1982/83, Lect. Notes Math., 1006, 562–568, Berlin: Springer Verlag.Google Scholar
Mader, A. (1984) Groups and modules that are slender as modules over their endomorphism rings, Abelian Groups and Modules: Proceedings of the Udine Conference, Italy, CISM Courses and Lectures 287, 315–327, Vienna: Springer-Verlag.Google Scholar
Mader, A. & Mines, R. (1980) Functorial topologies with totally ordered neighborhood bases, Arch. Math., 34, 272275.Google Scholar
Mader, A. & Mines, R. (1982) Completions of linearly topologized vectorspaces, J. Algebra, 74, No.2, 317327.Google Scholar
Mader, A. & Vinsonhaler, C. (1987) Minimal Hausdorff topologies on Abelian groups, in Abelian Group Theory: Proceedings of the Third Conference, Oberwolfach, 1985, 399– 416, ed. Göbel, Rüdiger and Walker, Elbert A., New York: Gordon and Breach.Google Scholar
Maeda, F. (1958) Kontinuierliche Geometrien, Berlin: Springer Verlag.Google Scholar
Malcev, A. (1936) Untersuchungen aus dem Gebiete der mathematischen Logik, Recueil Math. Moscou (Mat. Sbornik) (NS) 1(43), N. 3, 323336. [Иccлeдовaния по мaтeмaтичecкой логикe, Mam. Cбopнuк (H.C.).]Google Scholar
Maranda, J. -M. (1960) On pure subgroups of Abelian groups, Arch. Math., 11(1960), 113.Google Scholar
Maranda, J. -M. (1964) Injective structures, Trans. Amer. Math. Soc., 110, 98135.Google Scholar
Markowsky, G. (1976) Chain-complete posets and directed sets with applications, Algebra Univ., 6, 5368.Google Scholar
Marot, J. (1975) Sur les anneaux universellement japonais, Bull. Soc. Math. France, 103, 103111.Google Scholar
Matlis, E. (1964) Cotorsion Modules, Mem. Amer. Math. Soc., 49, Providence, RI: American Mathematical Society.Google Scholar
McConnell, J. C. (1969) The noetherian property in complete rings and modules, J. Algebra, 12, 143153.Google Scholar
McConnell, J. C. (1979) I-adic completions of non-commutative rings, Israel J. Math., 32, No.4, 305310.Google Scholar
McKenzie, R. (1971) 1-incompactness of Z, Colloq. Math., 23, 199202.Google Scholar
Menini, C. & Orsatti, A. (1985) Topologically left artinian rings, J. Algebra, 93, 475508.Google Scholar
Méray, Ch., (1868) Remarques nouvelles sur les points fondamentaux du calcul infinitésimal et sur la théorie de développement des fonctions en séries, Revue des Sociétés Savantes, Sci. Math. Phys. Nat., 2, No.3, 37, 133138.Google Scholar
Méray, Ch., (1869) Remarques sur la nature des quantités définies par la condition de servir de limites á des variables données, Revue des Sociétés Savantes, Sci. Math. Phys. Nat., 4th ser., 10, 280289.Google Scholar
Mines, R. (1977) A different completion functor, in Abelian Group Theory: Proceedings of the 2nd New Mexico State University Conference, 1976, Lect. Notes Math., 616, 392–398, New York: Springer Verlag.Google Scholar
Mines, R. (1981) Cotorsion modules over Noetherian hereditary rings, in Abelian Group Theory: Proceedings of the Oberwolfach Conference, 1981, Lect. Notes Math., 874, 242250.Google Scholar
Mines, R. & Oxford, E. (1979) Model induced triples and completions of abelian groups [Gruppi abeliani e loro relazioni con la teoria dei moduli], Symp. Math., 23, 189– 199.Google Scholar
Mishina, A. P. (1950) On complete direct sums of Abelian torsion-free groups of rank one, Ukr. Math. J., 2, No.4, 6470. [O полныx cуммax aбeлeвыx гpупп бeз кpучeния пepвого paнгa, Укp. Mam. Жуpн., 2, N. 4, 64–70.]Google Scholar
Mitchell, B. M. (1965) Theory of Categories, New York and London: Academic Press.Google Scholar
Mitchell, B. M. (1973) The cohomological dimension of a directed set, Can. J. Math., 25, No.2, 233238.Google Scholar
Moore, E. H. (1915) Definition of limit in general integral analysis, Proc. Nat. Acad. Sci. USA, 1, 628632.Google Scholar
Moore, E. H. & Smith, H. L. (1922) A general theory of limits, Amer. J. Math., 44, No.2, 102121.Google Scholar
Moore, G. H. (2013) Zermelo’s Axiom of Choice: Its Origins, Development & Influence., Mineola, NY: Dover Publications.Google Scholar
Morel, A. C., Scott, D. A. & Tarski, A. (1958) Reduced products and the compactness theorem, Not. Amer. Math. Soc., 5, 674.Google Scholar
Morita, K. (1958) Duality for modules and its applications in the theory of rings with minimum condition. Science reports of the Tokyo Kyoiku Daigaku. Section A, 6(150), 83142.Google Scholar
Müller, B. J. (1970) Linear compactness and Morita duality, J. Algebra, 16, 6066.Google Scholar
Munkres, J. R. (1963, 1966) Elementary Differential Topology. Lectures given at Massachusetts Institute of Technology, Fall 1961, Annals of Mathematics Studies, 54, revised ed., Princeton, NJ: Princeton University Press.Google Scholar
Mycielski, J. (1964) Some compactifications of general algebras, Colloq. Math., 13, No.1, 19.Google Scholar
Nagata, M. (1962) Local Rings, New York, London, Sydney: Interscience.Google Scholar
Nakayama, T. (1949) Mengenlehre, Topologie, Algebra, Tokyo (Japanese).Google Scholar
Narasimhan, R. (1971) Several Complex Variables, Chicago, IL: University of Chicago Press.Google Scholar
Neeman, A. (2002) A counterexample to a 1961 “theorem” in homological algebra, Invent. Math., 148, 397420.Google Scholar
von Neumann, J. (1934) Almost periodic functions in groups I, Trans. Amer. Math. Soc., 36, No.3, 445492.Google Scholar
von Neumann, J. (1935) On complete topological spaces, Trans. Amer. Math. Soc., 37, 120.Google Scholar
Nienhuys, J. W. (1970) Not locally compact monothetic groups, I, II, Indag. Math., 32, No.4, I:295310; II:311–326.Google Scholar
Nienhuys, J. W. (1971) Corrections to “Not locally compact monothetic groups,” Indag. Math., 33, No.1, 59.Google Scholar
Nienhuys, J. W. (1972) Construction of group topologies on abelian groups, Fund. Math., 75, 101116.Google Scholar
Nishimura, J. -I. (1981) On ideal-adic completion of Noetherian rings, J. Math. Kyoto Univ., 21, No.1, 153169.Google Scholar
Nishimura, J. -I. (1988) Ideal-adic completion of Noetherian rings, Rev. Roum. Math. Pures Appl., 33, No.4, 369373.Google Scholar
Nöbeling, G. (1961) Über die Derivierten des inversen und des direkten Limes einer Modulfamilie, Topology, 1, 4761.Google Scholar
Nunke, R. J. (1959) Modules of extensions over Dedekind rings, Ill. J. Math., 3, 222241.Google Scholar
Nunke, R. J. (1961) Slender groups, Bull. Amer. Math. Soc., 67, 274275.Google Scholar
Nunke, R. J. (1962) Slender groups, Acta Sci. Math. Szeged, 23, 6773.Google Scholar
O’Neill, J. (1985) On direct products of modules over Dedekind domains, Comm. Alg., 13, No.10, 21612173.Google Scholar
O’Neill, J. (1991) Slender modules over various rings, Indian J. Pure Appl. Math., 22, No.4, 287293.Google Scholar
Orsatti, A. (1979) Introduzione ai Gruppi Abeliani Astratti Topologici, Quaderni dell’ Unione Matematica Italiana 8, Bologna: Pitagora Editrice.Google Scholar
Pareigis, B. (1970) Categories and Functors, New York and London: Academic Press.Google Scholar
Pascal, B. (1958) Pascal’s Pensées. New York: E.P. Dutton & Co., Inc. [c. 1661; originally published 1669].Google Scholar
Pontrjagin, L. S. (1934) The theory of topological commutative groups, Ann. Math., 35, No.2, 361388.Google Scholar
Pontrjagin, L. S. (1939) Topological Groups, London: Oxford University Press, trans. H. Milford. [Original: Л. C. Пoнmpяƨuн, Henpepыɞныe ƨpуnnы. Mоcквa, Лeнингpaд: Γоcтexиздaт 1938; see 3rd edn, Moscow 1973.]Google Scholar
Pontrjagin, L. S. (1973) Continuous Groups, Moscow: Nauka. [Original in Russian: Henpepыɞныe ƨpуnnы . 3-e изд., Mоcквa: Haукa.]Google Scholar
Popescu, N. (1973) Abelian Categories with Applications to Rings and Modules. London and New York: Academic Press.Google Scholar
Popesco, N. & Gabriel, P. (1964) Caractérisation des catégories abélienes avec générateurs et limites inductives exactes, C. R. Acad. Sci. Paris, 258, Groupe 1, 4188–4190.Google Scholar
Prest, M (1988) Model Theory and Modules, London Mathematical Society Lecture Notes 130, Cambridge: Cambridge University Press.Google Scholar
Prüfer, E. P. H. (1921) Unendliche Abelsche Gruppen von Elementen endlicher Ordnung, dissertation, Universität Berlin.Google Scholar
Prüfer, E. P. H. (1923) Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen, Math. Z., 17, 3561.Google Scholar
Raikov, D. A. (1946) On the completions of topological groups, Izv. Akad. Nauk SSSR, Ser. Mat., 10, No.6, 513528. [O пополнeнии топологичecкиx гpупп, Изɞ. Aкa∂. Haук CCCP, 10, N. 6, 513–528.]Google Scholar
Rédei, L. & Szele, T. (1950) Die Ringe ,,ersten Ranges”, Acta Sci. Math., 12A, 1829.Google Scholar
Reid, G. A. (1967) Almost Free Abelian Groups, New Orleans, LA: Tulane University, Department of Mathematics.Google Scholar
Roos, J.-E. (1961) Sur les foncteurs dérivés de . Applications, C. R. Acad. Sci. Paris, 252, No.24, 37023704.Google Scholar
Roos, J.-E. (2006) Derived functors of inverse limits revisited, J. Lond. Math. Soc. (2) 73, No.2, 6583.Google Scholar
Rotman, J. J. (1961) On a problem of Baer and a problem of Whitehead, Acta Math. Hung., 12, 245254.Google Scholar
Rotthaus, C. (1979) Komplettierung semilokaler quasiausgezeichneter Ringe, Nagoya Math. J., 76, 173180.Google Scholar
Rotthaus, C. (1980) Zur Komplettierung ausgezeihneter Ringe, Math. Ann., 253, 213– 226.Google Scholar
Rychkov, S. V. (1981) On factor-group of the direct product of Abelian groups modulo its direct sum, Math. Notes, 29, Nos.3–4, 252–257. [Pычков, C.B. (1981): O фaктоp-гpуппe пpямого пpоизвeдeния aбeлeвыx гpупп по иx пpямой cуммe, Mam. зaмemкu, 29, N.4, 491–501, 632.]Google Scholar
Rychkov, S. V. (1982) On direct products of Abelian groups, Math. USSR Sbornik, 45Google Scholar
Rychkov, S. V. (1983), No.2, 273–282. [Original: O пpямыx пpоизвeдeнияx aбeлeвыx гpупп, Mameмamuчecкuŭu Cбopнuк, 117(159), N.2, 266–278, 288.]Google Scholar
Rychkov, S. V. (1987) On sheaves and cosheaves of modules over Boolean algebras, Uspekhi Mat. Nauk., 42, No.3, 231232. [Original: O пучкax и копучкax модулeй нaд Булeвыми aлгeбpaми, Уcnexu Mameмamuчecкux Haук, 42, N.3(255), 175–176.]Google Scholar
Salce, L. (1975) Moduli slender su anelli di Dedekind, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., 20, 5963.Google Scholar
Sasiada, E. (1959) Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci., 7, 143144.Google Scholar
Sheldon, P. B. (1971) How changing D[[x]] changes its quotient field, Trans. Amer. Math. Soc., 159, 223244.Google Scholar
Simson, D. (2002) Jerzy Łoś and a history of abelian groups in Poland, Rocky Mountain J. Math., 32, No.4, 12451255.Google Scholar
Skornyakov, L. A. (1964) Complemented Modular Lattices and Regular Rings, Edinburgh & London: Oliver & Boyd. [Original: Л. A. Cкоpняков, Дe∂eкuн∂oɞы cmpукmуpы c ∂onoлнeнuямu u peƨуляpныe кoльua no ux npя мoŭu cуммe. Mоcквa: Γоcудapcтвeнноe Издaтeльcтво Φизико-Haтeмaтичecкой Литepaтуpы 1961.]Google Scholar
Specker, E. (1949) Die erste Cohomologiegruppe von Überlagerungen und Homotopie – Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv., 23, 303333.Google Scholar
Specker, E. (1950) Additive Gruppen von Folgen ganzer Zahlen, Port. Math., 9, No.3, 131140.Google Scholar
Steenrod, N. E. (1936) Universal Homology Groups, PhD dissertation, Princeton University.Google Scholar
Stenström, B. (1967) Pure submodules, Arkiv Mat., 7, 159171.Google Scholar
Stenström, B. (1970a) On the completion of modules in an additive topology, J. Algebra, 16, 523540.Google Scholar
Stenström, B. (1970b) Coherent rings and FP-injective modules, J. Lond. Math. Soc., 2, 323329.Google Scholar
Stenström, B. (1975) Rings of Quotients, Berlin: Springer-Verlag.Google Scholar
Szpilrajn (Marczewski), E. (1930) Sur l’extension de l’ordre partiel, Fund. Math., 16, 386389.Google Scholar
Tarski, A. (1928) Sur la décomposition des ensembles en sous-ensembles presque dijoints, Fund. Math., 12, 188205.Google Scholar
Tarski, A. (1930) Une contribution à la théorie de la mesure, Fund. Math., 15, 4250.Google Scholar
Tarski, A. (1935a) Grundzüge des Systemkalkülus, I, Fund. Math., 25, 503526.Google Scholar
Tarski, A. (1935b) Grundzüge des Systemkalkülus, II, Fund. Math., 26, 283301.Google Scholar
Tarski, A. (1946) A remark on functionally free algebras, Ann. Math., 47, 163165.Google Scholar
Tarski, A. (1952) Some notions and methods on the borderline of algebra and metamathematics, in Proceedings of the International Congress of Mathematicians, 1950, 705–720, Providence, RI: American Mathematical Society.Google Scholar
Tietze, Heinrich (1923) Beiträge zur allgemeinen Topologie. I. Axiome für verschiedene Fassungen des Umgebungsbegriffs. III.Über die Komponenten offener Mengen. I.: Math. Ann., 88, 290312; III.: Monatsh. f. Math., 33, 15–17.Google Scholar
Todorcevic, S. (1985) Directed sets and cofinal types, Trans. Amer. Math. Soc., 290, No.2, 711723.Google Scholar
Traore, S. (1970) Slender Semigroups, Slender Modules and Slender Rings. Doctoral dissertation, University of Warsaw.Google Scholar
Traore, S. (1972) Slender modules, slender rings, Acta Sci. Math., 33, 7780.Google Scholar
Tukey, J. W. (1939) On Denumerability in Topology. PhD dissertation, Princeton University.Google Scholar
Tukey, J. W. (1940) Convergence and Uniformity in Topology, Annals of Mathematics Studies, 2, Princeton, NJ: Princeton University Press.Google Scholar
Tychonoff, A. (1929) Über die topologische Erweiterung von Räumen, Math. Ann., 102, 544561.Google Scholar
Tychonoff, A. (1935) Über einen Funktionenraum, Math. Ann., 111, No.1, 762766.Google Scholar
Ulam, S. (1930) Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., 16, 140150.Google Scholar
Vitali, G. (1905) Sul problema della misura dei gruppi di punti di una retta. Bologna: Tip. Gamberini e Parmeggiani.Google Scholar
van der Waerden, B. L. (1950) Modern Algebra, vols. I, II, New York: Frederic Ungar. [German original: (1931) Moderne Algebra, Berlin: Julius Springer.]Google Scholar
Warfield, R. B. Jr. (1969) Purity and algebraic compactness for modules, Pacific J. Math., 28, No.3, 699719.Google Scholar
Warfield, R. B. Jr. (1970) A theory of cotorsion modules, Preprint.Google Scholar
Weglorz, B. (1966) Equationally compact algebras, I, Fund. Math., 59, 289298.Google Scholar
Weil, A. (1937/1938) Sur les espaces à structure uniforme et sur la topologie générale, Actualités Sci. Ind., 551, No.40, Paris: Hermann.Google Scholar
Weil, H. (1939) Invariants, Duke Math. J., 5(1939), No.3, 489502.Google Scholar
Yeh, Z.-Z. (1959) Higher Inverse Limits and Homology Theories, PhD dissertation, Princeton University.Google Scholar
Yoneda, N. (1954) On the homology theory of modules, J. Fac. Sci. Univ. Tokyo, Sect. I, 7 193227.Google Scholar
Zeeman, E. C. (1955) On direct sums of free cycles, J. Lond. Math. Soc., 30, 195212.Google Scholar
Zelger, A. (1974) Sul completamento di un gruppo abeliano nella topologia dei sottogruppi di indice finito, Rend. Sem. Mat. Univ. Padova, 52, 5969.Google Scholar
Zelinsky, D. (1953) Linearly compact modules and rings, Amer. J. Math., 75, No.1, 7990.Google Scholar
Ziegler, M. (1984) Model theory of modules, Ann. Pure Appl. Logic, 26, 149213.Google Scholar
Zimmermann-Huisgen, B. & Zimmermann, W. (1978) Algebraically compact rings and modules, Math. Z., 161, 8193.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×