Book contents
- Frontmatter
- Contents
- Preface
- Invited Lectures
- List of Participants
- Aspects of Gert-Martin Greuel's Mathematical Work
- Exterior Algebra Methods for the Construction of Rational Surfaces in the Projective Fourspace
- Superisolated Surface Singularities
- Linear Free Divisors and Quiver Representations
- Derived Categories of Modules and Coherent Sheaves
- Monodromy
- Algorithmic Resolution of Singularities
- Newton Polyhedra of Discriminants: A Computation
- Depth and Differential Forms
- The Geometry of the Versal Deformation
- 21 Years of SINGULAR Experiments in Mathematics
- The Patchworking Construction in Tropical Enumerative Geometry
- Adjunction Conditions for One-Forms on Surfaces in Projective Three-Space
- Sextic Surfaces with Ten Triple Points
- Sextic Surfaces with 10 Triple Points
- Topology, Geometry, and Equations of Normal Surface Singularities
Exterior Algebra Methods for the Construction of Rational Surfaces in the Projective Fourspace
Published online by Cambridge University Press: 11 November 2009
- Frontmatter
- Contents
- Preface
- Invited Lectures
- List of Participants
- Aspects of Gert-Martin Greuel's Mathematical Work
- Exterior Algebra Methods for the Construction of Rational Surfaces in the Projective Fourspace
- Superisolated Surface Singularities
- Linear Free Divisors and Quiver Representations
- Derived Categories of Modules and Coherent Sheaves
- Monodromy
- Algorithmic Resolution of Singularities
- Newton Polyhedra of Discriminants: A Computation
- Depth and Differential Forms
- The Geometry of the Versal Deformation
- 21 Years of SINGULAR Experiments in Mathematics
- The Patchworking Construction in Tropical Enumerative Geometry
- Adjunction Conditions for One-Forms on Surfaces in Projective Three-Space
- Sextic Surfaces with Ten Triple Points
- Sextic Surfaces with 10 Triple Points
- Topology, Geometry, and Equations of Normal Surface Singularities
Summary
- Type
- Chapter
- Information
- Singularities and Computer Algebra , pp. 1 - 12Publisher: Cambridge University PressPrint publication year: 2006