Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T01:49:08.547Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  20 October 2020

Walter Carnielli
Affiliation:
Universidade Estadual de Campinas, Brazil
Frederique Janssen-Lauret
Affiliation:
University of Manchester
William Pickering
Affiliation:
Universidade Estadual de Campinas, Brazil
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, , see Hilbert, .Google Scholar
Behmann, Heinrich. “Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem”. Mathematische Annalen, volume 86 (1922), pp. l63229.Google Scholar
Berkeley, E. C.Boolean algebra and applications to insurance”. Record (American Institute of Actuaries), vol. 26 (1937), Part III, pp. 373414.Google Scholar
Bernays, , see Hilbert, .Google Scholar
Boole, George. The Mathematical Analysis of Logic. London and Cambridge, England, 1847. Reprinted in Collected Logical Works, Chicago and London, 1916.Google Scholar
Boole, George. An Investigation of the Laws of Thought. London, 1854. Reprinted ibidem.Google Scholar
Cantor, Georg. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, edited by Zermelo, Ernst. Berlin, 1932.Google Scholar
Carnap, Rudolf. The Logical Syntax of Language. London and New York, 1937.Google Scholar
Carnap, Rudolf. “Testability and meaning”. Philosophy of Science, vol. 3 (1936), pp. 419471, vol. 4 (1937), pp. l40.Google Scholar
Church, Alonzo. A Bibliography of Symbolic Logic. Providence, 1938. Reprinted from Journal of Symbolic Logic (1936, 1938).Google Scholar
Church, Alonzo. “A note on the Entscheidungsproblem”, Journal of Symbolic Logic, vol. 1 (1936), pp. 4041, 101102.Google Scholar
Cooley, J. C. A Primer of Formal Logic. New York: forthcoming.Google Scholar
Curry, H. B.Grundlagen der kombinatorischen Logik”. American Journal of Mathematics, vol. 52 (1930), p. 509536, 789834.Google Scholar
De Morgan, Augustus. Formal Logic: or, the Calculus of Inference, Necessary and Probable. London, 1847.Google Scholar
De Morgan, Augustus. “On the syllogism and on the calculus of relations”. Transactions of the Cambridge Philosophical Society, vol. 10 (1864), pp. 331358. (1860).Google Scholar
Ferreira da Silva, Vicente. Elementos de Lógica Matemática. S. Paulo, 1940.Google Scholar
Frege, Gottlob. Begriffsschrift. Halle, 1879.Google Scholar
Frege, Gottlob. Die Grundlagen der Arithmetik. Breslau, 1884. Reprinted 1934.Google Scholar
Frege, Gottlob. Grundgesetze der Arithmetik. VoI. 1, 1893; vol. 2, 1903. Jena.Google Scholar
Frege, Gottlob. “Ueber Sinn und Bedeutung”. Zeitschrift der Philosophie und philosophischer Kritik, n.s. vol. 100 (1892), pp. 2550.Google Scholar
Gödel, Kurt. On Undecidable Propositions of Formal Mathematical Systems. Mimeograph. Princeton, 1934.Google Scholar
Gödel, Kurt. The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton, 1940.Google Scholar
Gödel, Kurt. “Die Vollständigkeit der Axiome des logischen Funktionenkalkuls”. Monatshefte für Mathematik und Physik, vol. 37 (1930), pp. 349360.Google Scholar
Gödel, Kurt. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter System I”. Ibidem, vol. 38 (1931), pp. 173198.Google Scholar
Grelling, Kurt and Nelson, Leonard. “Bemerkungen zu den Paradoxien von Russell und Burali-Forti. Bemerkungen zur Vorstehenden Abhandlung von Gerhard Hessenberg”. Abhandlungen der Frieschen Schule, n.s. vol. 2 (1907–8), pp. 300334.Google Scholar
Hilbert, David and Ackermann, Wilhelm. Grundzüge der theoretischen Logik. Berlin, 1928. 2nd edition, 1938.Google Scholar
Hilbert, David and Ackermann, Wilhelm. and Bernays, Paul, Grundlagen der Mathematik, 2 vols. Berlin, 1934 and 1941.Google Scholar
Huntington, E. V. The Continuum. Cambridge, Mass., 1917.Google Scholar
Kuratowski, Casimir. “Sur la notion de l’ordre dans la théorie des ensembles”. Fundamenta Mathemeticae, vol. 2 (1921), pp. l61171.Google Scholar
Langford, , see Lewis, .Google Scholar
Lewis, C. I. A Survey of Symbolic Logic. Berkeley, 1918.CrossRefGoogle Scholar
Lewis, C. I. and Langford, C. H.. Symbolic Logic. New York, 1932.Google Scholar
Löwenheim, Leopold. “Über Möglichkeiten im Relativkalkul”. Mathematische Annalen, vol. 76 (1915), pp. 447470.Google Scholar
Łukasiewicz, Jan. “O logice trojwartosciowej”. Ruch Filozoficznej, vol. 5 (1920), pp. l69171.Google Scholar
Łukasiewicz, Jan. “Uwagi o aksyomacie Nicod’a i o ‘dedukcyi uogólniajacej’”. Ksiega Pamiatkowa Polskiego Towarzystwa Filozoficznego we Lwowie, Lwów 1931.Google Scholar
Neumann, J. V.Eine Axiomatisierung der Mengenlehre”. Journal für die reine und angewandte Mathematik, vol. 154 (1925), pp. 219240. Correction in vol. 155, p. l28.CrossRefGoogle Scholar
Nicod, Jean. “A reduction in the number of primitive propositions of logic”. Proceedings of the Cambridge Philosophical Society, vol. 19 (1917–20), pp. 3241.Google Scholar
Peano, Giuseppe. Formulaire de Mathématiques. Introduction, 1894; vol. 1, 1895; vol. 2, 1897–9. Torino. Vol. 3, 1901, Paris. Vol. 4, 1902–3; vol. 5 (s. v. Formulario Mathematico), 1905–8. Torino.Google Scholar
Peirce, C. S. Collected Papers. Edited by Hartshorne, C. and Weiss, P.. 6 vols. Cambridge, Mass., 1931–5.Google Scholar
Post, E. L.Introduction to a general theory of elementary propositions”. American Journal of Mathematics, vol. 43 (1921), pp. 163185.Google Scholar
Quine, W. V. A System of Logistic. Cambridge, Mass., 1934.CrossRefGoogle Scholar
Quine, W. V. Mathematical Logic. New York, 1940.Google Scholar
Quine, W. V. Elementary Logic. Boston, 1941.Google Scholar
Quine, W. V.Truth by convention”. Philosophical Essays for A. N Whitehead (New York, 1936), pp. 90124.Google Scholar
Quine, W. V.Relations and reason”. Technology Review, vol. 41 (1939), pp. 299301, 324327.Google Scholar
Quine, W. V.Designation and existence”. Journal of Philosophy, vol. 36 (1939), pp. 701709.Google Scholar
Quine, W. V.Completeness of the propositional calculus”. Journal of Symbolic Logic, vol. 3 (1938), pp. 3740.Google Scholar
Quine, W. V. “Element and number”. Ibidem, vol. 6 (1941), pp. 135149.Google Scholar
Quine, W. V. “On existence conditions for elements and classes”. Ibidem; forthcoming.Google Scholar
Quine, W. V.Whitehead and the rise of modern logic”. The Philosophy of A. N. Whitehead, Evanston, Illinois, 1941. pp. 127163.Google Scholar
Reichenbach, Hans. Wahrscheinlichkeitslehre. Leyden, 1935.Google Scholar
Rosser, Barkley. “The independence of Quine’s axioms *200 and *201”. Journal of Symbolic Logic, vol. 6 (1941), pp. 9697.CrossRefGoogle Scholar
Rosser, Barkley. “An informal exposition of proofs of Gödel’s theorems and Church’s theorem”. Ibidem, vol. 4 (1939), pp. 5360.Google Scholar
Russell, Bertrand (also see Whitehead, ). The Principles of Mathematics. Cambridge, England, 1903. second edition, New York, 1938.Google Scholar
Russell, Bertrand Introduction to Mathematical Philosophy. London, 1919 and 1920.Google Scholar
Russell, BertrandOn denoting”. Mind, vol. 14 (1905), pp. 479493.Google Scholar
Russell, BertrandMathematical logic as based on the theory of types”. American Journal of Mathematics, vol. 30 (1908), pp. 222262.CrossRefGoogle Scholar
Schröder, Ernst. Vorlesungen über die Algebra der Logik. Vol. 1, 1890; vol. 2, 1891–1905; vol. 3, 1895. Leipzig.Google Scholar
Shannon, C. E.A symbolic anaIysis of relay and switching circuits”. Transactions of the American Institute of Electrical Engineers, vol. 57 (1938), pp. 713723.CrossRefGoogle Scholar
Sheffer, H. M.A set of five independent postulates for Boolean algebras”. Transactions of the American Mathematical Society, vol. 14 (1913), pp. 481488.CrossRefGoogle Scholar
Skolem, ThoralfUeber einige Grundlagenfragen der Mathematik”. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, I. klasse, 1929, N.º 4.Google Scholar
Tarski, Alfred. Introduction to Logic. New York, 1941.Google Scholar
Whitehead, A. N. Universal Algebra. Cambridge, England, 1898.Google Scholar
Whitehead, A. N.On cardinal numbers”. American Journal of Mathematics, vol. 24 (1902), pp. 367394.CrossRefGoogle Scholar
Whitehead, A. N. and Russel, Bertrandl. Principia Mathematica. 3 vols. Cambridge, England, 1910–1913. second edition, 1925–1927.Google Scholar
Wiener, Norbert. “A simplification of the logic of relations”. Proceedings of the Cambridge Philosophical Society, vol. 17 (1912–14), pp. 387390.Google Scholar
Wittgenstein, Ludwig. Tractatus Logico-Philosophicus. New York and London, 1922.Google Scholar
Zermelo, Ernst. “Untersuchungen über die Grundlagen der Mengenlehre I”. Mathematische Annalen, vol. 65 (1908), pp. 261281.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×