Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:57:55.887Z Has data issue: false hasContentIssue false

15 - The Social Function of the Human Mirror System

A Motor Chauvinist View

from Part IV - Understanding Others

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Many different claims have been made concerning the function and role of the human mirror system. This chapter first examines the question of what makes the mirror system special, and whether this particular network can be clearly distinguished from visuomotor systems in the brain. Current studies suggest it is surprisingly hard to draw clear distinctions between mirroring and visuomotor systems. The second part then distinguishes between models for understanding, predicting and responding to social stimuli. I suggest that responding theories have been somewhat neglected, and that social responding should be considered as an important function of the mirror system, in the same way that grasping objects is an important function of the visuomotor system.
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 313 - 331
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellebaum, C., Tettamanti, M., Marchetta, E., Della Rosa, P., Rizzo, G., et al. (2013). Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex, 49, 11101125.CrossRefGoogle ScholarPubMed
Bourgeois, P., & Hess, U. (2008). The impact of social context on mimicry. Biological Psychology, 77, 343352.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322.CrossRefGoogle Scholar
Brincker, M. (2011). Moving beyond mirroring: A social affordance model of sensorimotor integration during action perception. PhD thesis, City University of New York.Google Scholar
Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., et al. (2001). Short communication action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404.CrossRefGoogle Scholar
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., et al. (2004a). Neural circuits involved in the recognition of actions performed by nonconspecifics: An FMRI study. Journal of Cognitive Neuroscience, 16, 114126.CrossRefGoogle ScholarPubMed
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., et al. (2004b). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand–object interactions in apraxia. Neuropsychologia, 43, 917929.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15, 12431249.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167.CrossRefGoogle ScholarPubMed
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., & Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28, 12081215.CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269298.CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. Journal of Neuroscience, 32, 45314539.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37, 177192.CrossRefGoogle ScholarPubMed
Creem-Regehr, S. H., Dilda, V., Vicchrilli, A. E., Federer, F., & Lee, J. N. (2007). The influence of complex action knowledge on representations of novel graspable objects: Evidence from functional magnetic resonance imaging. Journal of the International Neuropsychological Society, 13, 10091020.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 12571267.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 13831392.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., Hamilton, A. F. de C., Parkinson, J., Ramsey, R., Stadler, W., & Prinz, W. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 22382254.CrossRefGoogle ScholarPubMed
Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In Haggard, P., Rossetti, Y., & Kawato, M. (Eds.), Sensorimotor foundations of higher cognition. Oxford: Oxford University Press, 435459.Google Scholar
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417418.CrossRefGoogle ScholarPubMed
Elk, M. van, Viswanathan, S., van Schie, H. T., Bekkering, H., & Grafton, S. T. (2012). Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions. Experimental Brain Research, 218, 189200.CrossRefGoogle ScholarPubMed
Fabbri, S., Strnad, L., Caramazza, A., & Lingnau, A. (2014). Overlapping representations for grip type and reach direction. NeuroImage, 94, 138146.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 26082611.CrossRefGoogle ScholarPubMed
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769771.CrossRefGoogle ScholarPubMed
Friston, K. J., Mattout, J., & Kilner, J. M. (2011). Action understanding and active inference. Biological Cybernetics, 104, 137160.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 3, 593609.CrossRefGoogle Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8, 396403.CrossRefGoogle ScholarPubMed
Gallivan, J. P., Culham, J. C., & Cavina-Pratesi, C. (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience, 29, 43814391.CrossRefGoogle ScholarPubMed
Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 12391255.CrossRefGoogle ScholarPubMed
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 16741684.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, knowing: Toward an ecological psychology. Hillsdale, NJ: Lawrence Erlbaum, pp. 127–142.Google Scholar
Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 6, 231236.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fagg, A. H., Woods, R. P., & Arbib, M. A. (1996). Functional anatomy of pointing and grasping in humans. Cerebral Cortex, 6, 226237.CrossRefGoogle ScholarPubMed
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 119.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Grèzes, J., (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40, 212222.CrossRefGoogle ScholarPubMed
Grèzes, J., Tucker, M., Armony, J. L., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17, 27352740.CrossRefGoogle ScholarPubMed
Hamilton, A. F. de C. (2013). The mirror neuron system contributes to social responding. Cortex, 49, 29572959.CrossRefGoogle ScholarPubMed
Hamilton, A. F. de C., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. Journal of Neuroscience, 26, 11331137.CrossRefGoogle ScholarPubMed
(2007). The motor hierarchy: From kinematics to goals and intentions. In Haggard, P., Rosetti, Y., & Kawato, M. (Eds.), Sensorimotor foundations of higher cognition: Attention and performance XXII. Oxford: Oxford University Press, 129.Google Scholar
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137, 463483.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle Scholar
Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9, 2125.CrossRefGoogle Scholar
Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G., & Orban, G. A. (2010). Coding observed motor acts: Different organizational principles in the parietal and premotor cortex of humans. Journal of Neurophysiology, 104, 128140.CrossRefGoogle ScholarPubMed
Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. NeuroImage, 17, 16931704.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681695.CrossRefGoogle ScholarPubMed
Kellenbach, M. L., Brett, M., & Patterson, K. (2003). Actions speak louder than functions: The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience, 15, 3046.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processes, 8, 159166.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 1015310159.CrossRefGoogle ScholarPubMed
Kilner, J. M., Vargas, C., Duval, S., Blakemore, S.-J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7, 12991301.CrossRefGoogle ScholarPubMed
Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19, 23962410.CrossRefGoogle ScholarPubMed
Króliczak, G., McAdam, T. D., Quinlan, D. J., & Culham, J. C. (2008). The human dorsal stream adapts to real actions and 3D shape processing: A functional magnetic resonance imaging study. Journal of Neurophysiology, 100, 26272639.CrossRefGoogle ScholarPubMed
Landmann, C., Landi, S. M., Grafton, S. T., & Della-Maggiore, V. (2011). fMRI supports the sensorimotor theory of motor resonance. PLoS One, 6, e26859.CrossRefGoogle ScholarPubMed
Liepelt, R., Prinz, W., & Brass, M. (2010). When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426434.CrossRefGoogle ScholarPubMed
Masson, M. E. J., Bub, D. N., & Breuer, A. T. (2011). Priming of reach and grasp actions by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 37, 14701484.Google ScholarPubMed
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience & Biobehavioral Reviews, 33, 975980.CrossRefGoogle Scholar
Molenberghs, P., Cunnington, R., (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36, 341349.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78, 22262230.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P., & Downing, P. E. (2010). Surface-based information mapping reveals crossmodal vision: Action representations in human parietal and occipitotemporal cortex. Journal of Neurophysiology, 104, 10771089.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Pfeiffer, U. J., Timmermans, B., Vogeley, K., Frith, C. D., & Schilbach, L. (2013a). Towards a neuroscience of social interaction. Frontiers in Human Neuroscience, 7, 22.CrossRefGoogle ScholarPubMed
Pfeiffer, U. J., Vogeley, K., & Schilbach, L. (2013b). From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural correlates of gaze in social interaction. Neuroscience & Biobehavioral Reviews, 37, 25162528.CrossRefGoogle ScholarPubMed
Pobric, G., & Hamilton, A. F. de C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524529.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012). fMRI evidence of ‘mirror’responses to geometric shapes. PloS One, 7(12), e51934.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. (2000). Mirror neurons and imitation learning as the driving force behind ‘the great leap forward’ in human evolution. http://edge.org/3rd_culture/ramachandran/ramachandran_index.html.Google Scholar
Ramsey, R., & Hamilton, A. F. de C. (2010). Triangles have goals too: Understanding action representation in left aIPS. Neuropsychologia, 48, 27732776.CrossRefGoogle ScholarPubMed
Richardson, M. J., Marsh, K. L., & Baron, R. M. (2007). Judging and actualizing intrapersonal and interpersonal affordances. Journal of Experimental Psychology: Human Perception and Performance, 33, 845859.Google ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Experimental Brain Research, 71, 475490.CrossRefGoogle Scholar
Sartori, L., Bucchioni, G., & Castiello, U. (2013). When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 8, 662669.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36, 393414.CrossRefGoogle Scholar
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5, 769772.CrossRefGoogle ScholarPubMed
Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185203.CrossRefGoogle ScholarPubMed
Valyear, K. F., Gallivan, J. P., McLean, D. A., & Culham, J. C. (2012). fMRI repetition suppression for familiar but not arbitrary actions with tools. Journal of Neuroscience, 32, 42474259.CrossRefGoogle Scholar
Wang, Y., & Hamilton, A. F. de C. (2012). Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 6, 110.CrossRefGoogle Scholar
Wang, Y., (2013). Why does gaze enhance mimicry? Placing gaze-mimicry effects in relation to other gaze phenomena. Quarterly Journal of Experimental Psychology, 67(4), 747–762.Google ScholarPubMed
Wang, Y., Newport, R., & Hamilton, A. F. de C. (2011a). Eye contact enhances mimicry of intransitive hand movements. Biology Letters, 7, 710.CrossRefGoogle ScholarPubMed
Wang, Y., Ramsey, R., & Hamilton, A. F. de C. (2011b). The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 31, 1200112010.CrossRefGoogle ScholarPubMed
Wiestler, T., & Diedrichsen, J. (2013). Skill learning strengthens cortical representations of motor sequences. Elife, 2, e00801.CrossRefGoogle ScholarPubMed
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460473.CrossRefGoogle ScholarPubMed
Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2014). Brain activity and prosocial behavior in a simulated life-threatening situation. NeuroImage, 98,134–146.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×