Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T18:36:24.692Z Has data issue: false hasContentIssue false

4 - Beyond Action

Shared Representations in Non-Motor Domains

from Part I - Foundations

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

With the renewed interest in perception–action coupling at the cerebral level, this idea of shared representations has rapidly been extended to non-motor domains as well, including somatosensory experiences. Indeed, in the last decades, a wealth of evidence has been produced suggesting that experience of somatosensory stimulations such as touch and pain share common neurophysiological and cognitive representations with the perception of the same experiences in others. However, it remains unclear what exactly is shared between an individual experiencing a state and someone observing this individual, and to what extent non-motor shared representations are supported by evidence. Here, we first review the different definitions of shared representations in the somatosensory domain proposed in the cognitive neuroscience literature. We then briefly describe the neurophysiological mechanisms underlying pain and touch perception and provide a critical review of the evidence for and against shared somatosensory representations for the different aspects of pain and touch experiences. Finally, we argue that these shared somatosensory representations can be modulated by individual, relational and contextual characteristics, and while most of these modulations occur implicitly, some can be deliberate, focused and meant to optimize subsequent social interactions.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 59 - 85
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitsuki, Y., & Decety, J. (2009). Social context and perceived agency affects empathy for pain: An event-related fMRI investigation. NeuroImage, 47(2), 722734.CrossRefGoogle ScholarPubMed
Arnstein, D., Cui, F., Keysers, C., Maurits, N. M., & Gazzola, V. (2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31(40), 1424314249.CrossRefGoogle ScholarPubMed
Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955960.CrossRefGoogle ScholarPubMed
Avenanti, A., Minio-Paluello, I., Bufalari, I., & Aglioti, S. M. (2009). The pain of a model in the personality of an onlooker: Influence of state-reactivity and personality traits on embodied empathy for pain. NeuroImage, 44(1), 275283.CrossRefGoogle Scholar
Avenanti, A., Sirigu, A., & Aglioti, S. M. (2010). Racial bias reduces empathic sensorimotor resonance with other-race pain. Current Biology, 20(11), 10181022.CrossRefGoogle ScholarPubMed
Azevedo, R. T., Macaluso, E., & Avenanti, A. (2013). Their pain is not our pain: Brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Human Brain Mapping, 34(12), 31683181.CrossRefGoogle Scholar
Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 13(1), 190194.CrossRefGoogle ScholarPubMed
Banissy, M. J., Kadosh, R. C., Maus, G. W., Walsh, V., & Ward, J. (2009). Prevalence, characteristics and a neurocognitive model of mirror–touch synaesthesia. Experimental Brain Research, 198(2–3), 261272.CrossRefGoogle Scholar
Banissy, M. J., & Ward, J. (2007). Mirror–touch synesthesia is linked with empathy. Nature Neuroscience, 10(7), 815816.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.CrossRefGoogle ScholarPubMed
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 7, 301309.Google Scholar
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(5), 15151525.CrossRefGoogle Scholar
Björnsdotter, M., Löken, L., Olausson, H., Vallbo, A., & Wessberg, J. (2009). Somatotopic organization of gentle touch processing in the posterior insular cortex. Journal of Neuroscience, 29(29), 93149320.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision–touch synaesthesia. Brain, 128(7), 15711583.CrossRefGoogle Scholar
Blumenstiel, K., Gerhardt, A., Rolke, R., Bieber, C., Tesarz, J., et al. (2011). Quantitative sensory testing profiles in chronic back pain are distinct from those in fibromyalgia. Clinical Journal of Pain, 27(8), 682690.CrossRefGoogle ScholarPubMed
Bolognini, N., Miniussi, C., Gallo, S., & Vallar, G. (2013). Induction of mirror–touch synaesthesia by increasing somatosensory cortical excitability. Current Biology, 23(10), R436R437.CrossRefGoogle ScholarPubMed
Borsook, D., & Becerra, L. (2009). Emotional pain without sensory pain: Dream on? Neuron, 61(2), 153155.CrossRefGoogle ScholarPubMed
Botvinick, M., Jha, A. P., Bylsma, L. M., Fabian, S. A., Solomon, P. E., & Prkachin, K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage, 25(1), 312319.CrossRefGoogle ScholarPubMed
Bromm, B., & Treede, R. D. (1980). Withdrawal reflex, skin resistance reaction and pain ratings due to electrical stimuli in man. Pain, 9(3), 339354.CrossRefGoogle ScholarPubMed
Budell, L., Jackson, P., & Rainville, P. (2010). Brain responses to facial expressions of pain: Emotional or motor mirroring? NeuroImage, 53(1), 355363.CrossRefGoogle ScholarPubMed
Bufalari, I., Aprile, T., Avenanti, A., Di Russo, F., & Aglioti, S. M. (2007). Empathy for pain and touch in the human somatosensory cortex. Cerebral Cortex, 17(11), 25532561.CrossRefGoogle ScholarPubMed
Bushnell, M. C., & Apkarian, A. V. (2006). Representation of pain in the brain. In McMahon, S. B. & Koltzenburg, M. (Eds.), Wall and Melzack’s textbook of pain. Philadelphia, PA: Elsevier, 107124.CrossRefGoogle Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3, 2027.CrossRefGoogle ScholarPubMed
Cheng, Y., Lin, C.-P., Liu, H.-L., Hsu, Y.-Y., Lim, K.-E., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 17081713.CrossRefGoogle ScholarPubMed
Cheng, Y., Yang, C. Y., Lin, C. P., Lee, P. L., & Decety, J. (2008). The perception of pain in others suppresses somatosensory oscillations: A magnetoencephalography study. NeuroImage, 40(4), 18331840.CrossRefGoogle ScholarPubMed
Cheyne, D., Gaetz, W., Garnero, L., Lachaux, J.-P., Ducorps, A., et al. (2003). Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cognitive Brain Research, 17(3), 599611.CrossRefGoogle ScholarPubMed
Chong, T. T. J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580.CrossRefGoogle ScholarPubMed
Coll, M.-P., Budell, L., Rainville, P., Decety, J., & Jackson, P. L. (2012). The role of gender in the interaction between self-pain and the perception of pain in others. Journal of Pain, 13(7), 695703.CrossRefGoogle ScholarPubMed
Coll, M.-P., Grégoire, M., Latimer, M., Eugène, F., & Jackson, P. L. (2011). Perception of pain in others: Implication for caregivers. Pain Management, 1(3), 257265.CrossRefGoogle ScholarPubMed
Corradi-Dell’Acqua, C., Hofstetter, C., & Vuilleumier, P. (2011). Felt and seen pain evoke the same local patterns of cortical activity in insular and cingulate cortex. Journal of Neuroscience, 31(49), 1799618006.CrossRefGoogle ScholarPubMed
Costantini, M., Galati, G., Romani, G. L., & Aglioti, S. M. (2008). Empathic neural reactivity to noxious stimuli delivered to body parts and non-corporeal objects. European Journal of Neuroscience, 28(6), 12221230.CrossRefGoogle ScholarPubMed
Danziger, N., Faillenot, I., & Peyron, R. (2009). Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron, 61(2), 203212.CrossRefGoogle Scholar
Danziger, N., Prkachin, K. M., & Willer, J. C. (2006). Is pain the price of empathy? The perception of others’ pain in patients with congenital insensitivity to pain. Brain, 129(9), 24942507.CrossRefGoogle Scholar
Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85.Google Scholar
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113126.CrossRefGoogle Scholar
Davis, M. H. (1996). Empathy: A social psychological approach. Madison, WI: Westview Press.Google Scholar
Decety, J. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3(2), 71100.CrossRefGoogle ScholarPubMed
Decety, J. (2010). To what extent is the experience of empathy mediated by shared neural circuits? Emotion Review, 2(3), 204207.CrossRefGoogle Scholar
Decety, J., & Sommerville, J. A. (2003). Shared representations between self and other: A social cognitive neuroscience view. Trends in Cognitive Sciences, 7(12), 527533.CrossRefGoogle Scholar
Decety, J., Yang, C.-Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: An event-related brain potential study. NeuroImage, 50(4), 16761682.CrossRefGoogle ScholarPubMed
Drwecki, B. B., Moore, C. F., Ward, S. E., & Prkachin, K. M. (2011). Reducing racial disparities in pain treatment: The role of empathy and perspective-taking. Pain, 152(5), 10011006.CrossRefGoogle ScholarPubMed
Ebisch, S. J. H., Ferri, F., Salone, A., Perrucci, M. G., D’Amico, L., et al. (2011). Differential involvement of somatosensory and interoceptive cortices during the observation of affective touch. Journal of Cognitive Neuroscience, 23(7), 18081822.CrossRefGoogle ScholarPubMed
Ebisch, S. J. H., Perrucci, M. G., Ferretti, A., Del Gratta, C., Romani, G. L., & Gallese, V. (2008). The sense of touch: Embodied simulation in a visuotactile mirroring mechanism for observed animate or inanimate touch. Journal of Cognitive Neuroscience, 20(9), 16111623.CrossRefGoogle ScholarPubMed
Eisenberger, N. I. (2012). The neural bases of social pain: Evidence for shared representations with physical pain. Psychosomatic Medicine, 74(2), 126135.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., & Cole, S. W. (2012). Social neuroscience and health: Neurophysiological mechanisms linking social ties with physical health. Nature Neuroscience, 15(5), 669674.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.CrossRefGoogle ScholarPubMed
Fecteau, S., Pascual-Leone, A., & Théoret, H. (2008). Psychopathy and the mirror neuron system: Preliminary findings from a non-psychiatric sample. Psychiatry Research, 160(2), 137144.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Enticott, P. G., Rich, A. N., Giummarra, M. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2012). Mirror-sensory synaesthesia: Exploring ‘shared’ sensory experiences as synaesthesia. Neuroscience & Biobehavioral Reviews, 36(1), 645657.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Enticott, P. G., Rich, A. N., Giummarra, M. J., Georgiou-Karistianis, N., (2010a). High incidence of ‘synaesthesia for pain’ in amputees. Neuropsychologia, 48(12), 36753678.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Giummarra, M. J., Georgiou-Karistianis, N., Enticott, P. G., & Bradshaw, J. L. (2010b). Shared pain: From empathy to synaesthesia. Neuroscience & Biobehavioral Reviews, 34(4), 500512.CrossRefGoogle ScholarPubMed
Gaetz, W., & Cheyne, D. (2006). Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG. NeuroImage, 30(3), 899908.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.CrossRefGoogle ScholarPubMed
Garcia-Larrea, L., Frot, M., & Valeriani, M. (2003). Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiologie clinique/Clinical Neurophysiology, 33(6), 279292 .CrossRefGoogle ScholarPubMed
Garcia-Larrea, L., & Peyron, R. (2013). Pain matrices and neuropathic pain matrices: A review. Pain, 154, S29S43.CrossRefGoogle ScholarPubMed
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 18241829.CrossRefGoogle ScholarPubMed
Gazzola, V., Spezio, M. L., Etzel, J. A., Castelli, F., Adolphs, R., & Keysers, C. (2012). Primary somatosensory cortex discriminates affective significance in social touch. Proceedings of the National Academy of Sciences, 109(25), E1657E1666.CrossRefGoogle ScholarPubMed
Godinho, F., Faillenot, I., Perchet, C., Frot, M., Magnin, M., & Garcia-Larrea, L. (2011). How the pain of others enhances our pain: Searching the cerebral correlates of ‘compassional hyperalgesia’. European Journal of Pain, 16(5), 748759.CrossRefGoogle ScholarPubMed
Godinho, F., Magnin, M., Frot, M., Perchet, C., & Garcia-Larrea, L. (2006). Emotional modulation of pain: Is it the sensation or what we recall? Journal of Neuroscience, 26(44), 1145411461.CrossRefGoogle ScholarPubMed
Gracely, R. H., Geisser, M. E., Giesecke, T., Grant, M. A. B., Petzke, F., et al. (2004). Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain, 127(4), 835843.CrossRefGoogle Scholar
Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences, 95(25), 1506115065.CrossRefGoogle ScholarPubMed
Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149160.CrossRefGoogle ScholarPubMed
Hétu, S., Taschereau-Dumouchel, V., & Jackson, P. L. (2012). Stimulating the brain to study social interactions and empathy. Brain Stimulation, 5(2), 95102.CrossRefGoogle ScholarPubMed
Höfle, M., Pomper, U., Hauck, M., & Engel, A. K. (2013). Spectral signatures of viewing a needle approaching one’s body when anticipating pain. European Journal of Neuroscience, 38(7), 30893098.CrossRefGoogle ScholarPubMed
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951.CrossRefGoogle ScholarPubMed
Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205(1), 112.CrossRefGoogle Scholar
Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A., & Davis, K. D. (2013). Beyond metaphor: Contrasting mechanisms of social and physical pain. Trends in Cognitive Sciences, 17(8), 371378.CrossRefGoogle ScholarPubMed
International Association for the Study of Pain. (1994). Classification of chronic pain, 2nd edition. Seattle: IASP Press.Google Scholar
Jackson, P. L., Brunet, E., Meltzoff, A. N., & Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752761.CrossRefGoogle Scholar
Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24(3), 771779.CrossRefGoogle ScholarPubMed
Jensen, K. B., Petrovic, P., Kerr, C. E., Kirsch, I., Raicek, J., et al. (2013). Sharing pain and relief: Neural correlates of physicians during treatment of patients. Molecular Psychiatry, 1–7, 392398.Google Scholar
Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417428.CrossRefGoogle ScholarPubMed
Keysers, C., Wicker, B., Gazzola, V., Anton, J.-L., Fogassi, L., & Gallese, V. (2004). A touching sight. Neuron, 42(2), 335346.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159.CrossRefGoogle ScholarPubMed
Krishnan, A., Woo, CW., Chang, L. J., Ruzic, L., Gu, X., López-Solà, M., et al. (2016). Somatic and vicarious pain are represented by dissociable multivariate brain patterns. Elife, Jun 14(5), pii: e15166.Google Scholar
Kross, E., Berman, M. G., Mischel, W., Smith, E. E., & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences, 108(15), 62706275.CrossRefGoogle ScholarPubMed
Kuehn, E., Mueller, K., Turner, R., & Schütz-Bosbach, S. (2014). The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Structure & Function, 219(1), 119140.CrossRefGoogle ScholarPubMed
Kuehn, E., Trampel, R., Mueller, K., Turner, R., & Schütz-Bosbach, S. (2013). Judging roughness by sight: A 7-tesla fMRI study on responsivity of the primary somatosensory cortex during observed touch of self and others. Human Brain Mapping, 34(8), 18821895.CrossRefGoogle Scholar
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258.CrossRefGoogle ScholarPubMed
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 24922502.CrossRefGoogle ScholarPubMed
Lawrence, E. J., Shaw, P., Giampietro, V. P., & Surguladze, S. (2006). The role of ‘shared representations’ in social perception and empathy: An fMRI study. NeuroImage, 29(4), 11731184.CrossRefGoogle ScholarPubMed
Lee, S. J., Song, H. J., Decety, J., Seo, J., Kim, S. H., et al. (2013). Do patients with fibromyalgia show abnormal neural responses to the observation of pain in others? Neuroscience Research, 4, 305315.CrossRefGoogle Scholar
Loggia, M. L., Juneau, M., & Bushnell, M. C. (2011). Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain, 152(3), 592598.CrossRefGoogle Scholar
Loggia, M. L., Mogil, J. S., & Bushnell, M. C. (2008). Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 136(1–2), 168176.CrossRefGoogle ScholarPubMed
Lucy, P., Cohn, J. F., Prkachin, K. M., Solomon, P., & Matthrews, I. (2011). Painful data: The UNBC-McMaster Shoulder Pain Expression Archive Database. IEEE International Conference on Automatic Face and Gesture Recognition (FG2011).CrossRefGoogle Scholar
Mailhot, J. P., Vachon-Presseau, E., Jackson, P. L., & Rainville, P. (2012). Dispositional empathy modulates vicarious effects of dynamic pain expressions on spinal nociception, facial responses and acute pain. European Journal of Neuroscience, 35(2), 271278.CrossRefGoogle ScholarPubMed
Malinen, S., Renvall, V., & Hari, R. (2014). Functional parcellation of the human primary somatosensory cortex to natural touch. European Journal of Neuroscience, 5, 738743.CrossRefGoogle Scholar
Marcoux, L. A., Michon, P. E., Voisin, J. I., Lemelin, S., Vachon-Presseau, E., & Jackson, P. L. (2013). The modulation of somatosensory resonance by psychopathic traits and empathy. Frontiers in Human Neuroscience, 7, 113.CrossRefGoogle ScholarPubMed
Martínez-Jauand, M., González-Roldán, A. M., Muñoz, M. A., Sitges, C., Cifre, I., & Montoya, P. (2012). Somatosensory activity modulation during observation of other’s pain and touch. Brain Research, 1467, 4855.CrossRefGoogle ScholarPubMed
Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for ‘social pain’ and subsequent prosocial behavior. NeuroImage, 55(1), 381388.CrossRefGoogle ScholarPubMed
Mathur, V. A., Harada, T., & Chiao, J. Y. (2011). Racial identification modulates default network activity for same and other races. Human Brain Mapping, 33(8), 18831893.CrossRefGoogle ScholarPubMed
Melzack, R., & Casey, K. L. (1968). Sensory, motivational and central control determinants of pain: A new conceptual model. In Kenshalo, D. (Ed.), The skin senses. Springfield, IL: Charles C Thomas, 423439.Google Scholar
Meng, J., Hu, L., Shen, L., Yang, Z., Chen, H., et al. (2012). Emotional primes modulate the responses to others’ pain: An ERP study. Experimental Brain Research, 220(3–4), 277286.CrossRefGoogle ScholarPubMed
Meng, J., Jackson, T., Chen, H., Hu, L., Yang, Z., et al. (2013). Pain perception in the self and observation of others: An ERP investigation. NeuroImage, 72, 164173.CrossRefGoogle ScholarPubMed
Morrison, I., Bjornsdotter, M., & Olausson, H. (2011a). Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. Journal of Neuroscience, 31(26), 95549562.CrossRefGoogle ScholarPubMed
Morrison, I., Löken, L. S., Minde, J., Wessberg, J., Perini, I., et al. (2011b). Reduced C-afferent fibre density affects perceived pleasantness and empathy for touch. Brain, 134(4), 11161126.CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., & Johnson, B. W. (2004). Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology, 41(1), 152156.CrossRefGoogle ScholarPubMed
Novembre, G., Zanon, M., & Silani, G. (2014). Empathy for social exclusion involves the sensory-discriminative component of pain: A within-subject fMRI study. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsu038.CrossRefGoogle Scholar
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17(7), 311318.CrossRefGoogle ScholarPubMed
Osborn, J., & Derbyshire, S. W. G. (2010). Pain sensation evoked by observing injury in others. Pain, 148(2), 268274.CrossRefGoogle Scholar
Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180.CrossRefGoogle ScholarPubMed
Perry, A., Bentin, S., Bartal, I. B.-A., Lamm, C., & Decety, J. (2010). ‘Feeling’ the pain of those who are different from us: Modulation of EEG in the mu/alpha range. Cognitive, Affective & Behavioral Neuroscience, 10(4), 493504.CrossRefGoogle ScholarPubMed
Pihko, E., Nangini, C., Jousmäki, V., & Hari, R. (2010). Observing touch activates human primary somatosensory cortex. European Journal of Neuroscience, 31(10), 18361843.CrossRefGoogle ScholarPubMed
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating ‘seeing’ and ‘hearing’ into ‘doing’. Brain Research Reviews, 50(1), 5768.CrossRefGoogle ScholarPubMed
Press, C., Weiskopf, N., & Kilner, J. M. (2012). Dissociable roles of human inferior frontal gyrus during action execution and observation. NeuroImage, 60(3), 16711677.CrossRefGoogle ScholarPubMed
Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 17691772.CrossRefGoogle ScholarPubMed
Rainville, P. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968971.CrossRefGoogle Scholar
Rainville, P. (2002). Brain mechanisms of pain affect and pain modulation. Current Opinion in Neurobiology, 12(2), 195204.CrossRefGoogle ScholarPubMed
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human Brain Mapping, 30(4), 11681187.CrossRefGoogle ScholarPubMed
Rossetti, A., Miniussi, C., Maravita, A., & Bolognini, N. (2012). Visual perception of bodily interactions in the primary somatosensory cortex. European Journal of Neuroscience, 36(3), 23172323.CrossRefGoogle ScholarPubMed
Rossi, S., Tecchio, F., Pasqualetti, P., Ulivelli, M., Pizzella, V., et al. (2002). Somatosensory processing during movement observation in humans. Clinical Neurophysiology, 113(1), 1624.CrossRefGoogle ScholarPubMed
Saarela, M. V., Hlushchuk, Y., Williams, A. C., Schürmann, M., Kalso, E., & Hari, R. (2007). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230237.CrossRefGoogle ScholarPubMed
Schaefer, M., Heinze, H. J., & Rotte, M. (2012). Embodied empathy for tactile events: Interindividual differences and vicarious somatosensory responses during touch observation. NeuroImage, 60(2), 952957.CrossRefGoogle ScholarPubMed
Schaefer, M., Xu, B., Flor, H., & Cohen, L. G. (2009). Effects of different viewing perspectives on somatosensory activations during observation of touch. Human Brain Mapping, 30(9), 27222730.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Abu-Akel, A., Palgi, S., Sulieman, R., Fischer-Shofty, M., et al. (2013). Giving peace a chance: Oxytocin increases empathy to pain in the context of the Israeli–Palestinian conflict. Psychoneuroendocrinology, 38(12), 31393144.CrossRefGoogle Scholar
Simon, D., Craig, K. D., Miltner, W. H. R., & Rainville, P. (2006). Brain responses to dynamic facial expressions of pain. Pain, 126(1–3), 309318.CrossRefGoogle ScholarPubMed
Singer, T. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.CrossRefGoogle Scholar
Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1952). Neurology and the mind–body problem. American Scientist, 40, 291312.Google Scholar
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Streltsova, A., & McCleery, J. P. (2014). Neural time-course of the observation of human and non-human object touch. Social Cognitive and Affective Neuroscience, 9(3), 333341.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Martel, M. O., Roy, M., Caron, E., Jackson, P. L., & Rainville, P. (2011). The multilevel organization of vicarious pain responses: Effects of pain cues and empathy traits on spinal nociception and acute pain. Pain, 152(7), 15251531.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Roy, M., Martel, M. O., Albouy, G., Chen, J., et al. (2012). Neural processing of sensory and emotional-communicative information associated with the perception of vicarious pain. NeuroImage, 63(1), 5462.CrossRefGoogle ScholarPubMed
Valeriani, M., Betti, V., Le Pera, D., De Armas, L., & Miliucci, R. (2008). Seeing the pain of others while being in pain: A laser-evoked potentials study. NeuroImage, 40(3), 14191428.CrossRefGoogle Scholar
Voisin, J. I. A., Marcoux, L.-A., Canizales, D. L., Mercier, C., & Jackson, P. L. (2011). I am touched by your pain: Limb-specific modulation of the cortical response to a tactile stimulation during pain observation. Journal of Pain, 12(11), 11821189.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 13881397.CrossRefGoogle ScholarPubMed
Wied, M. de, & Verbaten, M. N. (2001). Affective pictures processing, attention, and pain tolerance. Pain, 90(1–2), 163172.CrossRefGoogle ScholarPubMed
Xu, X., Zuo, X., Wang, X., & Han, S. (2009). Do you feel my pain? Racial group membership modulates empathic neural responses. Journal of Neuroscience, 29(26), 85258529.CrossRefGoogle Scholar
Yang, C. Y., Decety, J., Lee, S., Chen, C., & Cheng, Y. (2009). Gender differences in the mu rhythm during empathy for pain: An electroencephalographic study. Brain Research, 1251, 176184.CrossRefGoogle ScholarPubMed
Zaki, J., Ochsner, K. N., Hanelin, J., Wager, T. D., & Mackey, S. C. (2007). Different circuits for different pain: Patterns of functional connectivity reveal distinct networks for processing pain in self and others. Social Neuroscience, 2(3–4), 276291.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×