Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T06:31:24.437Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  12 March 2021

Ranjan Roy
Affiliation:
Beloit College, Wisconsin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. 2007. Abel on Analysis: Papers of N.H. Abel on Abelian and Elliptic Functions and the Theory of Series. Heber City, UT: Kendrick Press. Translated by Phillip Horowitz from the second edition of Abel’s Oeuvres.Google Scholar
Abel, N.H. 1826. Untersuchungen über die Reihe 1 + (m/1)x + (m(m − 1)/2)x2 + · · ·. J. Reine Angew. Math., 1, 311339.Google Scholar
Abel, N.H. 1965. Oeuvres complètes. New York: Johnson Reprint. Edited by L. Sylow and S. Lie.Google Scholar
Abhyankar, S.S. 1976. Historical ramblings in algebraic geometry and related algebra. Am. Math. Monthly, 83, 409448.CrossRefGoogle Scholar
Acosta, D.J. 2003. Newton’s rule of signs for imaginary roots. Am. Math. Monthly, 110, 694706.Google Scholar
Ahlfors, L.V. 1982. Collected Papers. Boston: Birkhäuser. Asst. Editor: R.M. Shortt.Google Scholar
Ahlgren, S., and Ono, K. 2001. Addition and counting: The arithmetic of partitions. Notices A.M.S., 48, 978–984.Google Scholar
Alder, H.L. 1969. Partition identities — from Euler to the present. Am. Math. Monthly, 76, 733746.Google Scholar
Alexander, J.W. 1915. Functions which map the interior of the unit circle upon simple regions. Ann. of Math., 17, 1222.CrossRefGoogle Scholar
Allaire, P., and Bradley, R.E. 2004. Symbolical algebra as a foundation for calculus: D.F. Gregory’s contribution. Hist. Math., 29, 395426.CrossRefGoogle Scholar
Almkvist, G., and Berndt, B. 1988. Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary. Am. Math. Monthly, 95, 585607.Google Scholar
Altmann, S., and Ortiz, E.L. 2005. Olinde Rodrigues and His Times. Providence: A.M.S.Google Scholar
Anderson, G.W. 1991. A short proof of Selberg’s generalized beta formula. Forum. Math., 3, 415417.Google Scholar
Anderson, M., Katz, V., and Wilson, R. (eds). 2004. Sherlock Holmes in Babylon. Washington, D.C.: M.A.A.Google Scholar
Anderson, M., Katz, V., and Wilson, R. (eds). 2009. Who Gave You the Epsilon? Washington, D.C.: M.A.A.Google Scholar
Andrews, G. 1981. Ramanujan’s “lost” notebook. III. The Rogers-Ramanujan continued fraction. Adv. Math., 41, 186208.CrossRefGoogle Scholar
Andrews, G. 1986a. Eureka! num = Δ + Δ + Δ. J. Num. Theory, 23, 285293.Google Scholar
Andrews, G. 1986b. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence: A.M.S.Google Scholar
Andrews, G. 1998. The Theory of Partitions. Cambridge University Press.Google Scholar
Andrews, G., and Garvan, F. 1988. Dyson’s crank of a partition. Bull. A.M.S., 18, 167–171.Google Scholar
Andrews, G., Askey, R., Berndt, B., Ramanathan, K., and Rankin, R. (eds). 1988. Ramanujan Revisited. Boston: Acad. PressGoogle Scholar
Andrews, G., Askey, R., and Roy, R. 1999. Special Functions. Cambridge: Cambridge University Press.Google Scholar
Aomoto, K. 1987. Jacobi polynomials associated with Selberg’s integral. SIAM J. Math. Phys., 18, 545549.Google Scholar
Arakawa, T., Ibukiyama, T., and Kaneko, M. 2014. Bernoulli Numbers and Zeta Functions. New York: Springer.CrossRefGoogle Scholar
Arbogast, L. 1800. Du calcul des dérivations. Strasbourg: Levrault.Google Scholar
Archimedes, and Heath, T.L. 1953. The Works of Archimedes. New York: Dover. Translated with commentary by T.L. Heath; originally published in 1897.Google Scholar
Arnold, V.I. 1990. Huygens and Barrow, Newton and Hooke. Boston: Birkhäuser. Translated by E.J.F. Primrose.Google Scholar
Arnold, V.I. 2007. Yesterday and Long Ago. New York: Springer.Google Scholar
Artin, E. 1964. The Gamma Function. New York: Holt, Reinhart and Winston. Translated by Michael Butler.Google Scholar
Ash, J.M. 1976. Studies in Harmonic Analysis. Washington, D.C.: M.A.A.Google Scholar
Askey, R. 1975. Orthogonal Polynomials and Special Functions. Philadelphia: SIAM.Google Scholar
Askey, R., and Gasper, G. 1976. Positive Jacobi polynomial sums, II. Amer. J. Math, 98, 709737.CrossRefGoogle Scholar
Askey, R., and Ismail, M. 1980. The Rogers q-ultraspherical polynomials. Pages 175–182 of: Approximation Theory III. New York: Acad. Press. Edited by E. W. Cheney.Google Scholar
Askey, R., and Ismail, M. 1983. A generalization of untraspherical polynomials. Pages 55–78 of: Studies in Pure Mathematics, to the Memory of Paul Turán. Basel: Birkhäuser. Edited by P. Erdös.Google Scholar
Askey, R., and Wilson, J. 1985. Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials. Providence: Memoirs of the A.M.S.Google Scholar
Atkin, A.O.L. 1967. Proof of a Conjecture of Ramanujan. Glasgow Math. J., 8, 1432.CrossRefGoogle Scholar
Atkin, A.O.L. 1968. Multiplicative congruence properties. Proc. London Math. Soc., 18, 563576.Google Scholar
Atkin, A.O.L., and Lehner, J. 1970. Hecke Operators on Γ0(m). Math. Ann., 185, 134160.Google Scholar
Atkin, A.O.L., and Swinnerton-Dyer, P. 1954. Some properities of partititons. Proc. London Math. Soc., 4, 84106.Google Scholar
Babbage, C., and Herschel, J. 1813. Memoirs of the Analytical Society. Cambridge: Cambridge University Press.Google Scholar
Bäcklund, R. 1918. Über die Nullstellen der Riemannschen Zetafunktion. Acta Math., 41, 345375.Google Scholar
Baernstein, A. (ed). 1986. The Bieberbach Conjecture. Providence: A.M.S.Google Scholar
Bag, A.K. 1966. Trigonometrical series in the Karanapaddhati and the probable date of the text. Indian J. Hist. of Sci., 1, 98106.Google Scholar
Baillaud, B., and Bourget, H. (eds). 1905. Correspondance d’Hermite et de Stieltjes. Paris: Gauthier-Villars.Google Scholar
Baker, A. 1988. New Advances in Transcendence Theory. New York: Cambridge University Press.CrossRefGoogle Scholar
Baker, A., and Masser, D.W. 1977. Transcendence Theory. New York: Academic Press.Google Scholar
Barnes, E.W. 1908. A new development of the theory of the hypergeometric function. Proc. London Math. Soc., 6(2), 141177.Google Scholar
Baron, M.E. 1987. The Origins of the Infinitesimal Calculus. New York: Dover.Google Scholar
Barrow, I. 1735. Geometrical Lectures. London: Austen. Translated by E. Stone.Google Scholar
Barrow, I. 1916. Geometrical Lectures of Isaac Barrow. Chicago: Open Court. Translated with comprehensive introduction by J.M. Child.Google Scholar
Bateman, H. 1907. The correspondence of Brook Taylor. Bibliotheca Math., 7, 367371.Google Scholar
Bateman, P.T., and Diamond, H.G. 1996. A hundred years of prime numbers. Am. Math. Monthly, 103(9), 729–741. Reprinted in Anderson, Katz, and Wilson (2009), pp. 328–336.CrossRefGoogle Scholar
Baxter, R.J. 1980. Hard hexagons: exact solution. J. Phys., A 13, L61–L70. Letter to the editor.Google Scholar
Becher, H.W. 1980. Woodhouse, Babbage, Peacock, and modern algebra. Hist. Math., 7, 389400.Google Scholar
Bell, E.T. 1937. Men of Mathematics. New York: Simon and Schuster.Google Scholar
Berggren, L., Borwein, J., and Borwein, P. (eds). 1997. Pi: A Source Book. New York: Springer-Verlag.CrossRefGoogle Scholar
Berndt, B. 1985–1998. Ramanujan’s Notebooks. New York: Springer-Verlag.Google Scholar
Berndt, B. 1998. Gauss and Jacobi sums. New York: Wiley.Google Scholar
Berndt, B., and Ono, K. 2001. Ramanujan’s Unpublished Manuscript on the Partition and Tau Functions with Proof and Commentary. Pages 39–110 of: Foata, D., and Han, G.-N. (eds), The Andrews Festschrift. New York: Springer.Google Scholar
Bernoulli, D. 1753a. Réflexions et éclairissements sur les nouvelles vibrations des cordes exposées dans les Mémoires de l’Académie de 1747 et 1748. Hist. Acad. Sci. Berlin, 9, 147172.Google Scholar
Bernoulli, D. 1753b. Sur le mélange de plusieurs especes de vibrations simples isochrones, qui peuvent coexister dans un même système de corps. Hist. Acad. Sci. Berlin, 9, 173195.Google Scholar
Bernoulli, D. 1982–1996. Die Werke von Daniel Bernoulli. Basel: Birkhäuser.Google Scholar
Bernoulli, Ja. 1744. Jacobi Bernoulli Basileensis, Opera. Geneva: Cramer and Philibert.Google Scholar
Bernoulli, Ja. 1993–1999. Die Werke von Jakob Bernoulli. Basel: Birkhäuser.Google Scholar
Bernoulli, Ja., and Sylla, E.D. 2006. The Art of Conjecturing, Translation of Ars Conjectandi. Baltimore: Johns Hopkins University Press. Translated with comprehensive introduction by E.D. Sylla.Google Scholar
Bernoulli, Joh. 1696. Curvatura radii in diaphanis non uniformiformibus. Acta Erud., 16, 206–211. Reprinted in Bernoulli (1968) vol. 1, pp. 187–193.Google Scholar
Bernoulli, Joh. 1742. Opera Omnia. Lausanne; Geneva: Bousquet.Google Scholar
Bernoulli, Joh. 1968. Opera omnia. Hildesheim, Germany: G. Olms Verlag.Google Scholar
Bernoulli, N. 1738. Inquisitio in summam seriei 1 + 1/4 + 1/9 + 16/1 + 251 + 361 + etc. Comment. Petropolitanae, 10, 1921.Google Scholar
Bers, L. 1998. Selected Works of Lipman Bers. Providence: A.M.S. Edited by I. Kra and B. Maskit.Google Scholar
Bertrand, J. 1845. Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu’elle renferme. J. École Poly., 18, 123140.Google Scholar
Beukers, F., Brownawell, W.D., and Heckman, G. 1988. Siegel normality. Ann. of Math., 127, 279308.Google Scholar
Bézout, É. 2006. General Theory of Algebraic Equations. Princeton: Princeton University Press. Translated by E. Feron.Google Scholar
Bhaskaracharya. 2018. Translation of the Surya Siddhanta and of the Siddhanta Siromani. London: Forgotten Books. First published 1861. Translated with commentary by B.D. Sastri and L. Wilkinson.Google Scholar
Bieberbach, L. 1916. Über die Koeffizienten derjenigen Potenzreihen, … S.B. Preuss. Akad. Wiss., 138, 940955.Google Scholar
Binet, J. 1839. Mémoire sur les intégrales définies Eulériennes. J. École Poly., 16, 123343.Google Scholar
Bissell, C. C. 1989. Cartesian geometry: The Dutch contribution. Math. Intelligencer, 9(4), 3844.Google Scholar
Boas, R.P. 1954. Entire Functions. New York: Academic Press.Google Scholar
Boehle, K. 1933. Über die Transzendenz von Potenzen mit algebraischen Exponenten. Math. Ann., 108, 5674.Google Scholar
Bogolyubov, N.N., Mikhaĭlov, G.K., and Yushkevich, A.P. (eds). 2007. Euler and Modern Science. Washington, D.C.: M.A.A.Google Scholar
Bohr, H., and Mollerup, J. 1922. Laerebog i Matematisk Analyse. Copenhagen: Jul. Gjellerups Forlag.Google Scholar
Bolibruch, A.A., Osipov, Yu.S., and Sinai, Ya.G. (eds). 2006. Mathematical Events of the Twentieth Century. New York: Springer.CrossRefGoogle Scholar
Bolzano, B. 1930. Functionenlehre. Prague: Roy. Bohemian Acad. Sci. Edited by K. Rychlik.Google Scholar
Bolzano, B. 1980. A translation of Bolzano’s paper on the intermediate value theorem. Hist. Math., 7, 156–185. Translated by S.B. Russ.CrossRefGoogle Scholar
Bombieri, E., and Gubler, W. 2006. Heights in Diophantine Geometry. New York: Cambridge University Press.Google Scholar
Boole, G. 1839. Researches in the theory of analytical transformations, with a special application to the reduction of the general equation of the second order. Cambridge Math. J., 2, 3478.Google Scholar
Boole, G. 1841. Exposition of a general theory of linear transformations, Parts I and II. Cambridge Math. J., 3, 1–20, 106111.Google Scholar
Boole, G. 1844a. Notes on linear transformations. Cambridge Math. J., 4, 167–71.Google Scholar
Boole, G. 1844b. On a general method in analysis. Phil. Trans. Roy. Soc. London, 124, 225282.Google Scholar
Boole, G. 1845. Notes on linear transformations. Cambridge Math. J., 6, 106113.Google Scholar
Boole, G. 1847. The Mathematical Analysis of Logic. London: George Bell.Google Scholar
Boole, G. 1877. A Treatise on Differential Equations. London: Macmillan.Google Scholar
Borel, É. 1896. Démonstration élémenatire d’un théorème de M. Picard sur les fonctions entières. Comptes Rendus, 122, 10451048.Google Scholar
Borel, É. 1900. Leçons sur les fonctions entières. Paris: Gauthier-Villars.Google Scholar
Bornstein, M. 1997. Symbolic Integration. New York: Springer-Verlag.Google Scholar
Boros, G., and Moll, V. 2004. Irresistible Integrals. New York: Cambridge University Press.Google Scholar
Borwein, J., Bailey, D., and Girgensohn, R. 2004. Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: Peters.Google Scholar
Bos, H.J.M. 1974. Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive Hist. Exact Sci., 14, 190.Google Scholar
Bos, H.J.M. 1996. Johann Bernoulli on Exponential Curves. Nieuw Archief Wisk., 14, 119.Google Scholar
Bottazzini, U. 1986. The Higher Calculus. New York: Springer-Verlag. Translated by W. Van Egmond.Google Scholar
Bourbaki, N. 1994. Elements of the History of Mathematics. New York: Springer-Verlag. Translated by J. Meldrum.Google Scholar
Boyer, C.B. 1943. Pascal’s formula for the sums of the powers of integers. Scripta Math., 9, 237244.Google Scholar
Boyer, C.B., and Merzbach, U.C. 1991. A History of Mathematics. New York: Wiley.Google Scholar
Bradley, R.E., and Sandifer, C.E. (eds). 2007. Leonhard Euler: Life, Work and Legacy. Amsterdam: Elsevier.Google Scholar
Bradley, R.E., and Sandifer, C.E. (eds). 2009. Cauchy’s Cours d’analyse. New York: Springer. Translated with commentary by Bradley and Sandifer.Google Scholar
Brahmagupta. 1817. Algebra, with arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bháscara. London: Murray. Translated with notes by H.T. Colebrooke.Google Scholar
Bressoud, D. 2002. Was calculus invented in India? College Math. J., 33(1), 2–13. Reprinted in Anderson, Katz, and Wilson (2004), 131–137.Google Scholar
Bressoud, D. 2007. A Radical Approach to Real Analysis, second edition. Washington, D.C.: M.A.A.Google Scholar
Bressoud, D. 2008. A Radical Approach to Lesbesgue’s Theory of Integration. Cambridge: Cambridge University Press.Google Scholar
Bressoud, D., and Zeilberger, D. 1982. A short Rogers–Ramanunan bijection. Discrete Math., 38, 313315.Google Scholar
Brezinski, C. 1991. History of Continued Fractions and Padé Approximations. New York: Springer.Google Scholar
Briggs, H. 1624. Arithmetica Logarithmica. London: W. Jones.Google Scholar
Briggs, H. 1633. Trigonometria Britannica. Gouda: Pierre Rammasen.Google Scholar
Brinkley, J. 1807. An investigation of the general term of an important series in the inverse method of finite differences. Phil. Trans., 97, 114132.Google Scholar
Briot, C., and Bouquet, J.C. 1856. Recherches sur les propriétés des fonctions définies par des équations différentielles. J. École Poly., t. 21 , cahier 36, 133–198.Google Scholar
Briot, C., and Bouquet, J.C. 1859. Théorie des fonctions doublement périodiques et, en particulier, des fonctions elliptiques. Paris: Mallet-Bachelier.Google Scholar
Bronstein, M. 1997. Symbolic Integration. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Bronwin, B. 1849. On the determination of the coefficients in any series of sines and cosines of multiples of a variable angle from particular values of that series. Phil. Magazine, 34, 260268.Google Scholar
Brouncker, W. 1668. The squaring of the hyperbola, by an infinite series of rational numbers, together with its demonstration. Phil. Trans., 3, 645649.Google Scholar
Browder, F.E. (ed). 1976. Mathematical Developments Arising from Hilbert Problems. Providence: A.M.S.CrossRefGoogle Scholar
Buchler, J. 1955. The Philosophy of Peirce: Selected Writings. New York: Dover.Google Scholar
Budan de Boislaurent, F. 1822. Nouvelle méthode pour la résolution des équations numériques … Paris: Dondey-Dupré.Google Scholar
Bühler, W.K. 1981. Gauss: A Biographical Study. New York: Springer-Verlag.Google Scholar
Bunyakovski, V. 1859. Sur quelques inégalités concernant les intégrales ordinaires et les intégrales aux différences finies. Mém. de Acad. Sci. St.-Pétersbourg, 1, 118.Google Scholar
Burn, R.P. 2001. Alphose Antonio de Sarasa and logarithms. Hist. Math., 28, 117.Google Scholar
Burnside, W.S., and Panton, A.W. 1960. The Theory of Equations. New York: Dover.Google Scholar
Butzer, P.L., and Sz.-Nagy, B. 1974. Linear Operators and Approximation II. Basel: Birkhäuser.Google Scholar
Cahen, E. 1894. Sur la fonction ζ(s) de Riemann et sur des fonctions analogues. Ann. Sci. École Norm. Sup., 11, 75164.Google Scholar
Cajori, F. 1913. A History of Mathematics. New York: Macmillan.Google Scholar
Cajori, F. 1993. A history of mathematical notations. New York: Dover. Two volumes bound as one.Google Scholar
Campbell, G. 1728. A method of determining the number of impossible roots in affected aequations. Phil. Trans. Roy. Soc., 35, 515531.Google Scholar
Campbell, P.J. 1978. The origin of “Zorn’s Lemma” Hist. Math., 5, 7789.Google Scholar
Cannon, J.T., and Dostrovsky, S. 1981. The Evolution of Dynamics: Vibration Theory from 1687 to 1742. New York: Springer-Verlag.Google Scholar
Cantor, G. 1870a. Beweis, dass eine fṳr jeden reellen Werth von x durch eine trigonometrische Reihe gegebene Function f(x) sich nur auf eine einzige Weise in dieser Form darstellen lässt. J. Reine Angew. Math, 72, 139142.Google Scholar
Cantor, G. 1870b. Über einen die trigonometrischen Reihen betreffenden Lehrsatz. J. Reine Angew. Math, 72, 130–138. Reprinted in Cantor (1932) pp. 71–79.Google Scholar
Cantor, G. 1871. Notiz zu dem vorangehenden Aufsatze. J. Reines Angew. Math, 73, 294296.CrossRefGoogle Scholar
Cantor, G. 1872. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann., 5, 123132.Google Scholar
Cantor, G. 1932. Gesammelte Abhandlungen. Berlin: Springer. Edited by E. Zermelo.CrossRefGoogle Scholar
Carathéodory, C. 1912. Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten. Math. Ann., 72, 107144.Google Scholar
Cardano, G. 1993. Ars Magna or the Rules of Algebra. New York: Dover. Translated by T.R. Witmer.Google Scholar
Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta. Math., 116, 135157.Google Scholar
Cartier, P. 2000. Mathemagics. Pages 6–67 of: Planat, M. (ed), Lecture Notes in Physics, vol. 550. Berlin: Springer.Google Scholar
Cauchy, A.-L. 1823. Résumé des leçons données à l’École Royale Polytechnique sur le calcul infinitésimal. Paris: De Bure.Google Scholar
Cauchy, A.-L. 1827. Mémoire sur les intégrales définies. Mém. Acad. Roy. Sci., 1, 601–799. First presented to the Academy in 1814. Reprinted in Cauchy’s Oeuvres complètes (1), vol. 1, pp. 329506.Google Scholar
Cauchy, A.-L. 1829. Calcul différentiel. Paris: De Bure.Google Scholar
Cauchy, A.-L. 1840–1841. Exercices d’analyse et de physique mathématique. Paris: Bachelier.Google Scholar
Cauchy, A.-L. 1843a. Mémoire sur les fonctions dont plusieurs valuers sont liées entre elles par une équation linéaire, et sur diverses … Comptes Rendus, 17, 523–531. Reprinted in Cauchy (1882–1974), sér. 1, vol. 8, pp. 42–50.Google Scholar
Cauchy, A.-L. 1843b. Sur l’emploi légitime des séries divergentes. Comptes Rendus, 17, 370376.Google Scholar
Cauchy, A.-L. 1853. Note sur les séries convergentes dont les divers termes sont des fonctions continues … Comptes Rendus, 36, 454–459.Google Scholar
Cauchy, A.-L. 1882–1974. Oeuvres complètes. Paris: Gauthier-Villars.Google Scholar
Cauchy, A.-L. 1989. Analyse algébrique. Paris: Gabay.Google Scholar
Cayley, A. 1843. On the theory of determinants. Trans. Cambridge Phil. Soc., 8, 1–16. Reprinted in Cayley (1889–1898) vol. 1, pp. 6379.Google Scholar
Cayley, A. 1845a. Mémoire sur les fonctions doublement périodiques. J. Math. Pures Appl., 10, 385410.Google Scholar
Cayley, A. 1845b. On the theory of linear transformations. Cambridge Math. J., 1, 193–209. Reprinted in Cayley (1889–1898) vol. 1, pp. 8094.Google Scholar
Cayley, A. 1846. On linear transformations. Cambridge and Dublin Math. J., 1, 104–122. Reprinted in Cayley (1889–1898) vol. 1, pp. 95112.Google Scholar
Cayley, A. 1854. An introductory memoir upon quantics. Phil. Trans. Roy. Soc. London, 144, 244–258. Reprinted in Cayley (1889–1898) vol. 2, pp. 221234.Google Scholar
Cayley, A. 1855. A second memoir upon quantics. Phil. Trans. Roy. Soc. London, 146, 101–126. Reprinted in Cayley (1889–1898) vol. 2, pp. 250–275.Google Scholar
Cayley, A. 1856. A third memoir upon quantics. Phil. Trans. Roy. Soc. London, 146, 627647.Google Scholar
Cayley, A. 1889–1898. Collected Mathematical Papers. Cambridge: Cambridge University Press.Google Scholar
Cayley, A. 1895. Elliptic Functions. London: Bell.Google Scholar
Cesàro, E. 1890. Sur la multiplication des séries. Bull. Sci. Math., 14, 114–20.Google Scholar
Chabert, J.-L. 1999. A History of Algorithms: From the Pebble to the Microchip. New York: Springer. Translated by C. Weeks.Google Scholar
Chakravarti, G. 1932. Growth and development of permutations and combinations in India. Bull. Calcutta Math. Soc., 24, 7988.Google Scholar
Chandrasekhar, S. 1995. Newton’s Principia for the Common Reader. Oxford: Oxford University Press.Google Scholar
Charzynski, Z., and Schiffer, M. 1960. A new proof of the Bieberbach conjecture for the fourth coefficient. Arch. Rational Mech. Anal., 5, 187193.Google Scholar
Chebyshev, P. 1848. Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mém. savants étrangers Acad. Sci. St. Petersbourg, 6, 119.Google Scholar
Chebyshev, P. 1850. Mémoire sur nombres premiers. Mém. savants étrangers Acad. Sci. St. Petersbourg, 1, 1733.Google Scholar
Chebyshev, P. 1858. Sur une nouvelle série. Bull. Phys. Math. Acad. St. Petersburg, 17, 257261.Google Scholar
Chebyshev, P. L. 1899–1907. Oeuvres de P.L. Tchebychef. St. Petersburg: Acad. Impériale Sci.Google Scholar
Cheney, E. (ed). 1980. Approximation Theory III. New York: Academic Press.Google Scholar
Cherry, W., and Ye, Z. 2001. Nevanlinna Theory of Value Distribution. New York: Springer.Google Scholar
Chowla, S. 1934. Congruence properties of partitions. J. London Math. Soc., 9, 247.Google Scholar
Christoffel, E.B. 1867. Sul problema delle temperature stazionarie e la rappresentazione di una superficie. Annali Mat. Pura Appl., 1, 89–103. Translated by C. Formenti.Google Scholar
Chudnovsky, D.V., and Chudnovsky, G.V. 1988 . Approximations and complex multiplication according to Ramanujan. Pages 375–472 of: Andrews, G., Askey, R., Berndt, B., Ramanathan, K.G., and Rankin, R. (eds), Ramanujan Revisited: Proceedings of the Ramanujan Centenary Conference held at the University of Illinois, Urbana-Champaign, Illinois, June 1–5, 1987. Boston: Academic Press.Google Scholar
Clairaut, A.-C. 1734. Solution de plusieurs problèmes où il s’agit de trouver des courbes … Hist. Acad. Roy. Sci., 196–215.Google Scholar
Clairaut, A.-C. 1739. Recherches générales sur le calcul intégral. Mém. Acad. Roy. Sci., 1, 425436.Google Scholar
Clairaut, A.-C. 1740. Sur l’intégration ou la construction des équations différentielles du premier ordre. Mém. Acad. Roy. Sci., 2, 293323.Google Scholar
Clairaut, A.-C. 1754. Sur l’oribit apparente du Soleil autour de la terre, … Mém Hist. Acad. Sci. Paris, 9, 521565.Google Scholar
Clarke, F. M. 1929. Thomas Simpson and his Times. Baltimore: Waverly Press.Google Scholar
Clausen, T. 1828. Ueber die Fälle, wenn die Reihe von der Form y = 1 +· · · etc. ein Quadrat von der Form z = 1 +· · · etc. hat. J. Reine Angew. Math., 3, 8991.Google Scholar
Clausen, T. 1832. Über die Function sin ϕ + 212 sin 2ϕ + 312 sin 3ϕ + etc. J. Reine Angew. Math., 8, 298300.Google Scholar
Clausen, T. 1840. Theorem. Astronom. Nach., 17, 351352.Google Scholar
Clausen, T. 1858. Beweiss des von SchlömilchArchive Math. Phys., 30, 166169.Google Scholar
Cohen, H. 2007. Number Theory, Volume II: Analytic and Modern Tools. New York: Springer.Google Scholar
Cooke, R. 1984. The Mathematics of Sonya Kovalevskaya. New York: Springer-Verlag.Google Scholar
Cooke, R. 1993. Uniqueness of trigonometric series and descriptive set theory 1870–1985. Archive Hist. Exact Sci., 45, 281334.Google Scholar
Cooper, S. 2006. The quintuple product identity. Int. J. Number Theory, 2, 115161.Google Scholar
Corry, L. 2004. Modern Algebra and the Rise of Mathematical Structures. Basel: Birkhäuser.Google Scholar
Cotes, R. 1714. Logometria. Phil. Trans., 29, 545.Google Scholar
Cotes, R. 1722. Harmonia Mensurarum. Cambridge: Cambridge University Press. Edited by Robert Smith.Google Scholar
Cox, D.A. 1984. The arithmetic-geometric mean of Gauss. L’enseignement math., 30, 275330.Google Scholar
Cox, D.A. 2004. Galois Theory. Hoboken: Wiley.Google Scholar
Craig, J. 1685. Methodus figurarum lineis rectis et curvis. London: Pitt.Google Scholar
Craik, A.D.D. 2000. James Ivory, F.R.S., mathematician: “The most unlucky person that ever existed.” Notes and Records Roy. Soc. London, 54, 223247.Google Scholar
Craik, A.D.D. 2005. Prehistory of Faà di Bruno’s formula. Am. Math. Monthly, 112, 119130.Google Scholar
Crilly, T. 2006. Arthur Cayley. Baltimore: Johns Hopkins University Press.Google Scholar
d’Alembert, J. 1747. Recherches sur la courbe que forme une corde tenduë mise en vibration. Hist. Acad. Roy. Sci. Belles-Lettres, Berlin, 3, 214–219, 220–249.Google Scholar
d’Alembert, J. 1761–1780. Opuscules mathématiques. Paris: David.Google Scholar
Darboux, G. 1875. Mémoire sur les fonctions discontinues. Ann. École Norm. Sup., 4, 57112.Google Scholar
Datta, B., and Singh, A.N. 1962. History of Hindu Mathematics. Bombay: Asia Pub. House.Google Scholar
Datta, B.B. 1929. The Jaina school of mathematics. Calcutta Math. Soc., 21, 115145.Google Scholar
Dauben, J. 1979. Georg Cantor. Princeton: Princeton University Press.Google Scholar
Davenport, H. 1980. Multiplicative Number Theory. New York: Springer-Verlag.Google Scholar
Davenport, H., and Hasse, H. 1935. Die Nullstellen der Kongruenz-zetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 172, 151182.Google Scholar
Davis, P.J. 1959. Leonhard Euler’s Integral: A historical profile of the gamma function. Am. Math. Monthly, 66, 849869.Google Scholar
de Beaune, F., Girard, A., and Viète, F. 1986. The Early Theory of Equations: On Their Nature and Constitution. Annapolis, MD: Golden Hind Press. Translated by R. Schmidt.Google Scholar
de Branges, L. 1985. A proof of the Bieberbach conjecture. Acta Math., 157, 137162.Google Scholar
de Moivre, A. 1697. A method of raising an infinite multinomial to any given power, or extracting any given root of the same. Phil. Trans., 19, 619625.Google Scholar
de Moivre, A. 1698. A method of extracting the root of an infinite equation. Phil. Trans., 20, 190193.Google Scholar
de Moivre, A. 1707. Aequationum quarundam potestatis tertiae, … Phil. Trans., 25, 23682371.Google Scholar
de Moivre, A. 1730a. Miscellanea analytica de seriebus et quadraturis. London: Tonson and Watts.Google Scholar
de Moivre, A. 1730b. Miscellaneis analyticis supplementum. London: Tonson and Watts.Google Scholar
de Moivre, A. 1967. The Doctrine of Chances. New York: Chelsea.Google Scholar
Dedekind, R. 1857. Abriss einer Theorie der höheren Kongruenzen in Bezug auf einen reellen Primzahl-Modulus. J. Reine Angew. Math., 54, 1–26. Reprinted in Dedekind (1930) vol. 1, pp. 4067.Google Scholar
Dedekind, R. 1872. Stetigkeit and irrationale Zahlen. Braunschweig: Vieweg.Google Scholar
Dedekind, R. 1877. Schreiben an Herr Borchardt über die Theorie der elliptischen Modulfunktionen. J. Reine Angew. Math., 83, 265–292. Reprinted in Dedekind’s Werke (1930) vol. 1 pp. 174201.Google Scholar
Dedekind, R. 1930. Gesammelte Mathematische Werke. Braunschweig: F. Vieweg. Edited by R. Fricke, E. Noether and Ø. Ore.Google Scholar
Dedekind, R. 1963. Essays on the Theory of Numbers. New York: Dover. Translated by W.W. Beman.Google Scholar
Dedekind, R., and Weber, H. 2012. Theory of Algebraic Functions of One Variable. Providence: A.M.S. Translated by J. Stillwell.CrossRefGoogle Scholar
Delone, B.N. 2005. The St. Petersburg School of Number Theory. Providence: A.M.S.Google Scholar
Descartes, R. 1897–1913. Oeuvres. Paris: Léopold Cerf. edited by C. Adam and P. Tannery.Google Scholar
Descartes, R. 1954. La Géométrie. New York: Dover. Translated by D.E. Smith and M.L. Latham.Google Scholar
Dieudonné, J. 1931. Sur les fonctions univalentes. Comptes Rendus, 192, 11481150.Google Scholar
Dieudonné, J. 1981. History of Functional Analysis. Amsterdam: Elsevier.Google Scholar
Dini, U. 1878. Fondamenti per la teorica delle funzione de variabili reali. Pisa: Nistri.Google Scholar
Dirichlet, P.G.L. 1829a. Note sur les intégrales définies. J. Reine Angew. Math, 4, 9498.Google Scholar
Dirichlet, P.G.L. 1829b. Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entres des limites données. J. Reine Angew. Math., 4, 157–169. Reprinted in Dirichlet’s Werke vol. 1, pp. 117132.Google Scholar
Dirichlet, P.G.L. 1837. Über die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen. Reper. der Physik, 1, 152–174. Reprinted in Dirichlet’s Werke, vol. 1, pp. 133160.Google Scholar
Dirichlet, P.G.L. 1839a. Sur une nouvelle méthode pour la détermination des intégrales multiples. J. Math. Pures Appl., 4, 164–168. Reprinted in Dirichlet’s Werke vol. 1, pp. 377380.Google Scholar
Dirichlet, P.G.L. 1839b. Ueber eine neue Methode zur Bestimmung vielfacher Integrale. Akad. Wiss. Berlin von 1839, 18–25. Reprinted in Dirichlet’s Werke vol. 1, pp. 381–390; see pp. 393–410 for later expanded version from 1841.Google Scholar
Dirichlet, P.G.L. 1840. Recherches sur diverses applications de l’analyse infinitésimale à la théorie des nombres. J. Reine Angew. Math., 19 , 21, (19): 324–369, (21): 1–12, 134–155. Reprinted in Dirichlet’s Werke vol. 1, pp. 411496.Google Scholar
Dirichlet, P.G.L. 1863. Démonstration d’un théorème d’Abel. J. Math. Pures App., 7(2), 253–255. Also in Werke vol. I, pp. 305–306.Google Scholar
Dirichlet, P.G.L. 1969. Mathematische Werke. New York: Chelsea.Google Scholar
Dirichlet, P.G.L., and Dedekind, R. 1999. Lectures on Number Theory. Providence: A.M.S. Translated by John Stillwell.Google Scholar
Dörrie, H. 1965. 100 Great Problems of Elementary Mathematics. New York: Dover. Translated by D. Antin.Google Scholar
Douglas, R.G. 1972. Banach Algebra Techniques in Operator Theory. New York: Academic Press.Google Scholar
Doxiadis, A., and Mazur, B. (eds). 2012. Circles Disturbed. Princeton: Princeton University Press.Google Scholar
Dugac, P. 1973. Éléments d’analyse de Karl Weierstrass. Archive Hist. Exact. Sci., 10, 41176.Google Scholar
Duke, W., and Tschinkel, Y. (eds). 2005. Analytic Number Theory: A Tribute to Gauss and Dirichlet. Providence: A.M.S.Google Scholar
Dunham, W. 1990. Journey Through Genius. New York: Wiley.Google Scholar
Dunnington, G. 2004. Gauss: Titan of Science. Washington, D.C.: M.A.A.Google Scholar
Dupré, A. 1859. Examen d’une proposition de Legendre relative à la théorie des nombres. Paris: MalletBachelier.Google Scholar
Duren, P.L. 1983. Univalent Functions. New York: Springer-Verlag.Google Scholar
Dutka, J. 1984. The early history of the hypergeometric series. Archive Hist. Exact Sci., 31, 1534.Google Scholar
Dutka, J. 1991. The early history of the factorial function. Archive Hist. Exact Sci., 43, 225249.Google Scholar
Dyson, F. 1944. Some guesses in the theory of partitions. Eureka (Cambridge), 8, 1015.Google Scholar
Dyson, F. 1962. Statistical theory of the energy levels of complex systems. J. Math. Phys., 3, 140156.Google Scholar
Edwards, A.W.F. 1986. A quick route to sums of powers. Am. Math. Monthly, 93, 451455.Google Scholar
Edwards, A.W.F. 2002. Pascal’s Arithmetical Triangle. Baltimore: Johns Hopkins University Press.Google Scholar
Edwards, H.M. 1977. Fermat’s Last Theorem. Berlin: Springer-Verlag.Google Scholar
Edwards, H.M. 1984. Galois Theory. New York: Springer-Verlag.Google Scholar
Edwards, H.M. 2001. Riemann’s Zeta Function. New York: Dover.Google Scholar
Edwards, J. 1954a. An Elementary Treatise on the Differential Calculus. London: Macmillan.Google Scholar
Edwards, J. 1954b. Treatise on Integral Calculus. New York: Chelsea.Google Scholar
Eie, M. 2009. Topics In Number Theory. Singapore: World Scientific.Google Scholar
Eisenstein, G. 1844. Beiträge zur Kreistheilung. J. Reine Angew. Math., 27, 269278.Google Scholar
Eisenstein, G. 1975. Mathematische Werke. New York: Chelsea.Google Scholar
Elliott, E.B. 1964. An Introduction to the Algebra of Quantics. New York: Chelsea.Google Scholar
Ellis, D.B., Ellis, R., and Nerurkar, M. 2001. The topological dynamics of semigroup actions. Trans. A.M.S., 353, 1279–1320.Google Scholar
Ellis, R.L. 1845. Memoir to D.F. Gregory. Cambridge and Dublin Math. J., 4, 145152.Google Scholar
Elstrodt, J. 2005. The Life and Work of Gustav Lejeune Dirichlet (1805–1859). In: Duke, W., and Tschinkel, Y. (eds), Analytic Number Theory: A Tribute to Gauss and Dirichlet. Providence: A.M.S.Google Scholar
Emch, G.G., Sirdhara, R., and Srinivas, M.D. (eds). 2005. Contributions to the History of Indian Mathematics. New Delhi: Hindustan Book Agency and Springer.Google Scholar
Eneström, G. 1897. Sur la découverte de l’intégrale complète des équations différentielles linéaires à coefficients constants. Bib. Math., 11, 4350.Google Scholar
Eneström, G. 1905. Der Briefwechsel zwischen Leonhard Euler und Johann I Bernoulli. Bib. Math., 6, 1687.Google Scholar
Engelsman, S.B. 1984. Families of Curves and the Origins of Partial Differentiation. Amsterdam: North-Holland.Google Scholar
Enros, P. 1983. The analytical society (1812–1813). Hist. Math., 10, 2447.Google Scholar
Erdős, P. 1932. Beweis eines Satzes von Tschebyschef. Acta. Sci. (Szeged), 5, 194198.Google Scholar
Erdős, P. 1949. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. USA, 35, 374384.Google Scholar
Erman, A. (ed). 1852. Briefwechsel zwischen Olbers und Bessel. Leipzig: Avenarius and Mendelssohn.Google Scholar
Euler, L. 1911–2000. Leonhardi Euleri Opera omnia. Berlin: Teubner.Google Scholar
Euler, L. 1985. An essay on continued fractions. Math. Syst. Theory, 18, 295–328. Translated by M. Wyman and B. Wyman.Google Scholar
Euler, L. 1988. Introduction to Analysis of the Infinite. New York: Springer-Verlag. Translated by J.D. Blanton.Google Scholar
Euler, L. 2000. Foundations of Differential Calculus. English Translation of First Part of Euler’s Institutiones calculi differentialis. New York: Springer-Verlag. Translated by J.D. Blanton.Google Scholar
Faà di Bruno, F. 1857. Note sur une nouvelle formule de calcul différentiel. Quarterly J. Pure Appl. Math., 1, 359360.Google Scholar
Fagnano, G.C. 1911. Opere matematiche. Rome: Albrighi.Google Scholar
Farkas, H.M., and Kra, I. 2001. Theta Constants, Riemann Surfaces and the Modular Group. Providence: A.M.S.Google Scholar
Fatou, P. 1906. Séries trigonométriques et séries de Taylor. Acta Math., 30, 335400.Google Scholar
Favard, J. 1935. Sur les polynômes de Tchebicheff. Comptes Rendus, 200, 20522053.Google Scholar
Feigenbaum, L. 1985. Taylor and the method of increments. Archive Hist. Exact Sci., 34, 1140.Google Scholar
Feingold, M. 1990. Before Newton. Cambridge: Cambridge University Press.Google Scholar
Feingold, M. 1993. Newton, Leibniz and Barrow too. Isis, 84, 310338.Google Scholar
Fejér, L. 1900. Sur les fonctions bornées et inteǵrables. Comptes Rendus, 131, 984987.Google Scholar
Fejér, L. 1904. Untersuchungen über Fouriersche Reihen. Math. Ann., 58, 5169.Google Scholar
Fejér, L. 1908. Sur le développement d’une fonction arbitraire suivant les fonctions de Laplace. Comptes Rendus, 146, 224227.Google Scholar
Fejér, L. 1970. Gesammelte Arbeiten. Basel: Birkhäuser. Edited by Paul Turán.Google Scholar
Fekete, M., and Szegő, G. 1933. Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc., 8, 8589.Google Scholar
Feldheim, E. 1941. Sur les polynômes généralisés de Legendre. Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Acad. Nauk SSSR], 5, 241–254.Google Scholar
Ferraro, G. 2004. Differentials and differential coefficients in the Eulerian foundations of the calculus. Hist. Math., 31, 3461.Google Scholar
Ferreirós, J. 1993. On the relations between Georg Cantor and Richard Dedekind. Hist. Math., 20, 343–63.Google Scholar
FitzGerald, C.H. 1972. Quadratic inequalities and coefficient estimates for schlicht functions. Arch. Rational Mech. Anal., 46, 356368.Google Scholar
FitzGerald, C.H. 1985. The Bieberbach conjecture: Retrospective. Notices A.M.S., 32, 2–6.Google Scholar
Foata, D., and Han, G.-N. 2001. The triple, quintuple and sextuple product identities revisited. Pages 323–334 of: Foata, D., and Han, G.-N. (eds), The Andrews Festschrift: Seventeen Papers on Classical Number Theory and Combinatorics. New York: Springer.Google Scholar
Fomenko, O.M., and Kuzmina, G.V. 1986. The last 100 days of the Bieberbach conjecture. Math. Intelligencer, 8, 4047.Google Scholar
Forrester, P.J., and Warnaar, S.O. 2008. The Importance of the Selberg Integral. Bull. A.M.S., 45, 498–534.Google Scholar
Fourier, J. 1955. The Analytical Theory of Heat. New York: Dover. Translated by A. Freeman.Google Scholar
Français, J.F. 1812–1813. Analise transcendante. Memoire tendant à démontrer la légitimité de la séparation des échelles de différentiation et d’intégration des fonctions qu’elles affectent. Annales Gergonne, 3, 244272.Google Scholar
Frei, G. 2007. The unpublished section eight: On the way to function fields over a finite field. Pages 159–198 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Friedelmeyer, J.P. 1994. Le calcul des dérivations d’Arbogast dans le projet d’algébrisation de l’analyse à fin du xviiie siècle. Nantes, France: U. Nantes.Google Scholar
Frobenius, G. 1878. Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math, 84, 163.Google Scholar
Frobenius, G. 1880. Ueber die Leibnizsche Reihe. J. Reine Angew. Math., 89, 262264.Google Scholar
Fuss, P.H. (ed). 1968. Correspondance mathématique et physique. New York: Johnson Reprint.Google Scholar
Galois, É. 1830. Sur la théorie des nombres. Bull. Sci. Math. Phys. Chem., 13, 428435.Google Scholar
Galois, É. 1897. Oeuvres mathématiques. Paris: Gauthier-Villars.Google Scholar
Garabedian, P., and Schiffer, M. 1955. A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal., 4, 427465.Google Scholar
Gårding, L. 1994. Mathematics in Sweden before 1950. Providence: A.M.S.Google Scholar
Garsia, A.M., and Milne, S.C. 1981. A Rogers-Ramanujan bijection. J. Combin. Theory, 31, 289339.Google Scholar
Gauss, C.F. 1813. Disquisitiones generales circa–seriem infinitam. Gottingen: Comm. Soc. Reg. Gott: II. Reprinted in Werke, vol. 3, pp. 123–162.Google Scholar
Gauss, C.F. 1815. Methodus nova integralium valores per approximationem inveniendi. Göttingen: Dieterich. This monograph was presented to the Göttingen Society in 1814. It was reprinted in Gauss’s Werke vol. 3, pp. 163–196.Google Scholar
Gauss, C.F. 1863–1927. Werke. Leipzig: Teubner.Google Scholar
Gauss, C.F. 1965. Disquisitiones Arithmeticae (An English Translation). New Haven, Conn.: Yale University Press. Translated by A.A. Clarke.Google Scholar
Gauss, C.F. 1981. Arithmetische Untersuchungen. New York: Chelsea.Google Scholar
Gautschi, W. 1986. My involvement in de Branges’s proof. Pages 205–211 of: Baernstein, A. (ed), The Bieberbach Conjecture. Providence: A.M.S.Google Scholar
Gegenbauer, L. 1884. Zur Theorie der Functionen Cnν (x). Denkschriften Akad. Wiss. Wien, Math. Naturwiss. Klasse, 48, 293316.Google Scholar
Gelfand, I.M. 1988. Collected Papers. New York: Springer-Verlag.Google Scholar
Gelfand, I.M., Kapranov, M.M., and Zelevinsky, A.V. 1994. Discriminants, Resultants, and Multidimensional Determinants. Boston: Birkhäuser.Google Scholar
Gelfond, A.O. 1934. Sur le septième problème de Hilbert. Dok. Akad. Nauk SSSR, 2, 16.Google Scholar
Gelfond, A.O. 1939. In Russian: On the approximation by algebraic numbers of the ratio of the logarithms of two algebraic numbers. Izvestia Akad. Nauk. SSSR, 5–6, 509518.Google Scholar
Gelfond, A.O. 1960. Transcendental and Algebraic Numbers. New York: Dover. Translated by L. Boron.Google Scholar
Gelfond, A.O., and Linnik, Yu.V. 1966. Elementary Methods in the Analytic Theory of Numbers. Cambridge, MA: MIT Press. Translated by D.E. Brown.Google Scholar
Georgiadou, M. 2004. Constantine Carathéodory. New York: Springer-Verlag.Google Scholar
Gerhardt, K.I. (ed). 1899. Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern. Berlin: Mahler and Müller.Google Scholar
Girard, A. 1884. Invention nouvelle en l’algebre. Leiden: Haan.Google Scholar
Glaisher, J.W.L. 1878. Series and products for π and powers of π. Messenger Math., 7, 7580.Google Scholar
Glaisher, J.W.L. 1883. A theorem in partitions. Messenger Math., 12, 158170.Google Scholar
Goethe, N., Beeley, P., and Rabouin, D. (eds). 2015. G.W. Leibniz, Interrelation between Mathematics and Philosophy. Dordrecht: Springer.Google Scholar
Goldstein, C., Schappacher, N., and Schwermer, J. (eds). 2007. The Shaping of Arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Goldstein, L. J. 1973. A history of the prime number theorem. Am. Math. Monthly, 80, 599–615. Correction, p. 1115. Reprinted in Anderson, Katz, and Wilson (2009), pp. 318–327.Google Scholar
Goldstine, H.H. 1977. A History of Numerical Analysis. New York: Springer-Verlag.Google Scholar
Gong, S. 1999. The Bieberbach Conjecture. Providence: A.M.S.Google Scholar
Gonzalez-Velasco, E.A. 2011. Journey through Mathematics. New York: Springer.Google Scholar
Good, I.J. 1970. Short proof of a conjecture of Dyson. J. Math. Phys., 11, 1884.Google Scholar
Gordan, P. 1868. Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math., 69, 323354.Google Scholar
Gordon, B. 1961. A combinatorial generalization of the Rogers-Ramanujan identities. Amer. J. Math., 83, 393399.Google Scholar
Gouvêa, F.Q. 1994. A marvelous proof. Am. Math. Monthly, 101, 203222.Google Scholar
Gowing, R. 1983. Roger Cotes. New York: Cambridge University Press.Google Scholar
Grabiner, J.V. 1981. The Origins of Cauchy’s Rigorous Calculus. Cambridge, MA: MIT Press.Google Scholar
Grabiner, J.V. 1990. The Calculus as Algebra. New York: Garland Publishing.Google Scholar
Grace, J.H., and Young, A. 1965. The Algebra of Invariants. New York: Chelsea.Google Scholar
Graham, G., Rothschild, B.L., and Spencer, J.H. 1990. Ramsey Theory. New York: Wiley.Google Scholar
Grattan-Guinness, I. 1972. Joseph Fourier 1768–1830. Cambridge, MA: MIT Press.Google Scholar
Grattan-Guinness, I. (ed). 2005. Landmark Writings in Western Mathematics. Amsterdam: Elsevier.Google Scholar
Graves, R.P. 1885. Life of Sir William Rowan Hamilton. London: Longmans.Google Scholar
Gray, J. 1986. Linear Differential Equations and Group Theory from Riemann to Poincaré. Boston: Birkhäuser.Google Scholar
Gray, J. 1994. On the history of the Riemann mapping theorem. Rendiconti Circolo Matematico Palermo, 34, 4794.Google Scholar
Gray, J., and Parshall, K.H. (eds). 2007. Episodes in the History of Modern Algebra (1800–1950). Providence: A.M.S.Google Scholar
Green, G. 1970. Mathematical Papers. New York: Chelsea. Edited by N.M. Ferrers.Google Scholar
Greenberg, J.L. 1995. The Problem of the Earth’s Shape from Newton to Clairaut. Cambridge: Cambridge University Press.Google Scholar
Gregory, D.F. 1865. The Mathematical Writings of Duncan Farquharson Gregory. Cambridge: Deighton, Bell. Edited by W. Walton.Google Scholar
Gregory, J. 1668. Exercitationes Geometricae. London: Godbid.Google Scholar
Grinshpan, A.Z. 1972. Logarithmic coefficients of functions in the class S, English translation. Siberian Math J., 13, 793801.Google Scholar
Gronwall, T.H. 1913. On the degree of convergence of Laplace’s series. Trans. A.M.S., 15, 1–30.Google Scholar
Gronwall, T.H. 1914. Some remarks on conformal representation. Ann. Math., 16, 7276.Google Scholar
Grootendorst, A.W., and van Maanen, J.A. 1982. Van Heuraet’s letter (1659) on the rectification of curves. Nieuw Archief Wiskunde, 30(3), 95113.Google Scholar
Grunsky, H. 1939. Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Zeit., 45, 2961.Google Scholar
Gudermann, C. 1838. Theorie der Modular-Functionen und der Modular-Integrale. J. Reine Angew. Math., 18, 220258.Google Scholar
Guicciardini, N. 1989. The Development of Newtonian Calculus in Britain 1700–1800. Cambridge: Cambridge University Press.Google Scholar
Gunson, J. 1962. Proof of a conjecture of Dyson in the statistical theory of energy levels. J. Math. Physics, 3, 752753.Google Scholar
Gupta, R.C. 1969. Second order interpolation in Indian mathematics up to the fifteenth century. Ind. J. Hist. Sci., 4, 8698.Google Scholar
Gupta, R.C. 1977. Paramesvara’s rule for the circumradius of a cyclic quadrilateral. Hist. Math., 4, 6774.Google Scholar
Hadamard, J. 1893. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann. J. Math. Pures Appl., 4, 171215.Google Scholar
Hadamard, J. 1896. Sur la distribution des zéros de la fonction γ(s) et ses conséquences arithmétiques. Bull. Soc. Math. France, 24, 199220.Google Scholar
Hadamard, J. 1899. Théorème sur séries entières. Acta Math., 22, 5564.Google Scholar
Haimo, D.T. 1968. Orthogonal Expansions and Their Continuous Analogues. Carbondale: Southern Illinois University Press.Google Scholar
Hald, A. 1990. A History of Probability and Statistics and Their Applications Before 1750. New York: Wiley.Google Scholar
Halley, E. 1695. A most compendious method for constructing the logarithmsPhil. Trans., 19, 5867.Google Scholar
Hamel, G. 1905. Eine Basis aller Zahlen und die unstetiggen Lösungen der Funktionalgleichung: f(x + y) = f(x) + f(y). Math. Ann., 60, 459462.Google Scholar
Hamilton, W.R. 1835. Theory of Conjugate Functions or Algebraic Couples. Dublin: Philip Dixon Hardy.Google Scholar
Hamilton, W.R. 1945. Quaternions. Proc. Roy. Irish Acad., 50, 8992.Google Scholar
Hankel, H. 1864. Die Eulerschen Integrale bei unbeschränkter Variabilität des Arguments. Zeit. Math. Phys., 9, 121.Google Scholar
Hardy, G.H. 1905. The Integration of Functions of a Single Variable. Cambridge: Cambridge University Press.Google Scholar
Hardy, G.H. 1929. Prolegomena to a chapter on inequalities. J. London Math. Soc., 1, 6178.Google Scholar
Hardy, G.H. 1937. A Course in Pure Mathematics. Cambridge: Cambridge University Press.Google Scholar
Hardy, G.H. 1949. Divergent Series. Oxford: Clarendon.Google Scholar
Hardy, G.H. 1966–79. Collected Papers. Oxford: Clarendon.Google Scholar
Hardy, G.H. 1978. Ramanujan. New York: Chelsea.Google Scholar
Hardy, G.H., and Heilbronn, H. 1914. Edmund Landau. J. London Math. Soc., 13, 302310.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1913. Tauberian theorems concerning power series of positive terms. Messenger Math., 42, 191192.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1914. Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive. Proc. London Math. Soc., 13, 174191.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1918. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math., 41, 119196.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1921. On a Tauberian theorem for Lambert’s series, and some fundamental theorems in the analytic theory of numbers. Proc. London Math. Soc., 19, 2129.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1922. Some problems of ‘partitio numerorum’ IV. Math. Zeit., 12, 161188.Google Scholar
Hardy, G.H., Littlewood, J., and Pólya, G. 1967. Inequalities. Cambridge: Cambridge University Press.Google Scholar
Harkness, J., and Morley, F. 1898. Introduction to the Theory of Analytic Functions. London: Macmillan.Google Scholar
Harriot, T., and Stedall, J. 2003. The Greate Invention of Algebra: Thomas Harriot’s Treatise on Equations. Oxford: Oxford University Press. Introduction and commentary by J. Stedall.Google Scholar
Harriot, T., Beery, J., and Stedall, J. 2009. Thomas Harriot’s Doctrine of Triangular Numbers: ‘The Magisteria Magna.’ Zürich: European Math. Soc. Extensive background and commentary by Beery and Stedall.Google Scholar
Hasse, H., and Davenport, H. 2014. Manuskripte Hasse-Davenport. Heidelberg: Heidelberg University Communication between Davenport and Hasse: heidelberg.de.Google Scholar
Hawking, S. 2005. God Created the Integers. Philadelphia: Running Press.Google Scholar
Hawkins, T. 1975. Lebesgue Theory. New York: Chelsea.Google Scholar
Hayman, W.K. 1964. Meromorphic Functions. Oxford: Clarendon.Google Scholar
Hayman, W.K. 1994. Multivalent Functions. Cambridge: Cambridge University Press.Google Scholar
Heegner, K. 1952. Diophantische Analysis und Modulfunktionen. Math. Zeit., 56, 227253.Google Scholar
Heine, E. 1847. Untersuchungen über die ReiheJ. Reine Angew. Math., 34, 285328.Google Scholar
Heine, E. 1870. Über trigonometrische Reihen. J. Reine Angew. Math., 71, 353365.Google Scholar
Heine, E. 1872. Die Elemente der Functionenlehre. J. Reine Angew. Math., 74, 172188.Google Scholar
Heine, E. 1878. Handbuch der Kugelfunctionen. Berlin: Reimer.Google Scholar
Hellegourarch, Y. 2002. Invitation to the Mathematics of Fermat-Wiles. London: Acad. Press. Translated by Leila Schneps.Google Scholar
Hermann, J. 1716. De variationibus chordarum tensarum disquisitio, … Acta Erud., 370–377.Google Scholar
Hermann, J. 1719. Solution duorum problematum … Acta Erud., August, 1719, 351–361.Google Scholar
Hermite, C. 1848. Note sur la théorie des fonctions elliptiques. Cam. and Dub. Math. J., 3, 5456.Google Scholar
Hermite, C. 1873. Cours d’analyse. Paris: Gauthier-Villars.Google Scholar
Hermite, C. 1891. Cours de M. Hermite (rédigé en 1882 par M. Andoyer). Ithaca: Cornell University Library Reprint.Google Scholar
Hermite, C. 1905–1917. Oeuvres. Paris: Gauthier-Villars. Edited by É. Picard.Google Scholar
Herschel, J.F.W. 1820. A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge: Cambridge University Press.Google Scholar
Hewitt, E., and Hewitt, R. E. 1980. The Gibbs-Wilbraham phenomenon. Archive Hist. Exact Sci., 21, 129160.Google Scholar
Hickerson, D. 1988. A proof of the mock theta conjectures. Inventiones Math., 94, 639660.Google Scholar
Hilbert, D. 1893. Über die Transzendenz der Zahlen e und π. Gött. Nachr., 113–116.Google Scholar
Hilbert, D. 1897. Zum Gedächtnis an Karl Weierstrass. Gött. Nach., 60–69.Google Scholar
Hilbert, D. 1906. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, vierte Mitteilung. Gött. Nach., 157–227.Google Scholar
Hilbert, D. 1970. Gesammelte Abhandlungen. Berlin: Springer.Google Scholar
Hilbert, D. 1978. Hilbert’s Invariant Theory Papers. Brookline, MA: Math. Sci. Press. Translated by M. Ackerman with Commentary by R. Hermann.Google Scholar
Hilbert, D. 1993. Theory of Algebraic Invariants. New York: Cambridge University Press. Translated by R. C. Laubenbacher.Google Scholar
Hindenburg, C.F. 1778. Methodus nova et facilis serierum infinitarum exhibendi dignitates exponentis indeterminati. Leipzig: Langenhem.Google Scholar
Hobson, E.W. 1957a. The Theory of Functions of a Real Variable. New York: Dover.Google Scholar
Hobson, E.W. 1957b. A Treatise on Plane and Advanced Trigonometry. New York: Dover.Google Scholar
Hoe, J. 2007. A Study of the Jade Mirror of the Four Unknowns. Christchurch, N.Z.: Mingming Bookroom.Google Scholar
Hofmann, J.E. 1974. Leibniz in Paris. Cambridge: Cambridge University Press. Translated by A. Prag and D.T. Whiteside.Google Scholar
Hofmann, J.E. 1990. Ausgewählte Schriften. Zürich: Georg Olms Verlag. Edited by C. Scriba.Google Scholar
Hofmann, J.E. 2003. Classical Mathematics. New York: Barnes and Noble.Google Scholar
Hölder, O. 1889. Über einen Mittelwertsatz. Gött. Nach., 38–47.Google Scholar
Horiuchi, A.T. 1994. The Tetsujutsu sankei (1722), an 18th century treatise on the methods of investigation in mathematics. Pages 149–164 of: Sasaki, C., Sugiura, M., and Dauben, J.W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Horowitz, D. 1978. A further refinement for coefficient estimates of univalent functions. Proc. A.M.S., 71, 217–221.Google Scholar
Horowitz, E. 1969. Algorithms for Symbolic Integration of Rational Functions. PhD thesis, University of Wisconsin, Madison.Google Scholar
Hua, L.K. 1981. Starting with the Unit Circle. New York: Springer-Verlag. Translated by K. Weltin.Google Scholar
Hua, L.K., and Vandiver, H.S. 1948. On the existence of solutions of certain equations in a finite field. Proc. Nat. Acad. Sci. USA, 34, 258263.Google Scholar
Hua, L.K., and Vandiver, H.S. 1949. On the existence of solutions of certain equations in a finite field. Proc. Nat. Acad. Sci. USA, 35, 9499.Google Scholar
Hutton, C. 1812. Tracts on mathematical and philosophical subjects. London: Rivington.Google Scholar
Ireland, K., and Rosen, M. 1982. A Classical Introduction to Modern Number Theory. New York: Springer-Verlag.Google Scholar
Ivory, J. 1796. A new series for the rectification of the ellipses. Trans. Roy. Soc. Edinburgh, 4, 177190.Google Scholar
Ivory, J. 1812. On the attractions of an extensive class of spheroids. Phil. Trans. Roy. Soc. London, 102, 4682.Google Scholar
Ivory, J. 1824. On the figure requisite to maintain the equilibrium of a homogeneous fluid mass that revolves upon an axis. Phil. Trans. Roy. Soc. London, 114, 85150.Google Scholar
Ivory, J., and Jacobi, C.G.J. 1837. Sur le développement de (1 − 2xz + z 2 )−1/2 . J. Math. Pures App., 2, 105106.Google Scholar
Jackson, F.H. 1910. On q-definite integrals. Quart. J. Pure App. Math., 41, 193203.Google Scholar
Jacobi, C.G.J. 1826. Ueber Gauss’ neue Methode, die Werthe der Integrale näherungsweise zu finden. J. Reine Angew. Math., 1, 301–308. Reprinted in Jacobi (1969) vol. 6, pp. 311.Google Scholar
Jacobi, C.G.J. 1833. Demonstratio Formulae. J. Reine Angew. Math., 11, 307. Reprinted in Jacobi (1969) vol. 6, pp. 62–63.Google Scholar
Jacobi, C.G.J. 1834. De usu legitimo formulae summatoriae Maclaurinianae. J. Reine Angew. Math., 12, 263–272. Reprinted in Jacobi (1969) vol. 6, pp. 64–75.Google Scholar
Jacobi, C.G.J. 1837. Über die Kreistheilung und ihre Anwendung auf die Zahlentheorie. Monats. Akad. Wiss. Berlin, 127–136. Reprinted in 1846 in Crelle’s Journal; in Jacobi’s Werke vol. 6, pp. 254–274; French translation published in 1856 in Nouv. Ann. Math.Google Scholar
Jacobi, C.G.J. 1841. De determinantibus functionalibus. J. Reine Angew. Math., 22, 319–359. Reprinted in Jacobi (1969) vol. 3, pp. 393–438.Google Scholar
Jacobi, C.G.J. 1846. Über einige der Binomialreihe Analoge Reihen. J. Reine Angew. Math, 32, 197–204. Reprinted in Jacobi (1969) vol. 6, pp. 163–173.Google Scholar
Jacobi, C.G.J. 1847. De seriebus ac differentiis observatiunculae. J. Reine Angew. Math., 36, 135–142. Republished in Jacobi (1969) vol. 4, pp. 174–182.Google Scholar
Jacobi, C.G.J. 1859. Untersuchungen über die Differentialgleichung der hypergeometrische Reihe. J. Reine Angew. Math, 56, 149–165. Reprinted in Jacobi (1969) vol. 6, pp. 184202.Google Scholar
Jacobi, C.G.J. 1969. Mathematische Werke. New York: Chelsea.Google Scholar
Jahnke, H.N. 1993. Algebraic analysis in Germany, 1780–1849: Some mathematical and philosophical issues. Hist. Math., 20, 265284.Google Scholar
James, I.M. 1999. History of Topology. Amsterdam: Elsevier.Google Scholar
Jensen, J. 1899. Sur un nouvel et important théorèm de la théorie des fonctions. Acta Math., 22, 359364.Google Scholar
Jensen, J. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math., 30, 175193.Google Scholar
Johnson, W.P. 2002. The curious history of Faà di Bruno’s formula. Am. Math. Monthly, 109, 217234.Google Scholar
Johnson, W.P. 2007. The Pfaff/Cauchy derivative and Hurwitz type extensions. Ramanujan J. Math., 13, 167201.Google Scholar
Jordan, C. 1979. Calculus of Finite Differences. New York: Chelsea.Google Scholar
Jyesthadeva. 2009. Ganita-Yukti-Bhasa of Jyesthadeva, 2 volumes. New Delhi: Hindustan Book Agency and Springer. Jyesthadeva’s text translated from Malayalam into English by K. V. Sarma, with notes by editors K. Ramasubramanian, M.D. Srinivas, and M.S. Sriram.Google Scholar
Kac, M. 1936–1937. Une remarque sur les équations fonctionnelles. Comment. Math. Helv., 9, 170171.Google Scholar
Kac, M. 1965. A Remark on Wiener’s Tauberian Theorem. Proc. A.M.S., 16, 1155–1157.Google Scholar
Kac, M. 1979. Selected Papers. Cambridge, MA: MIT Press.Google Scholar
Kac, M. 1987. Enigmas of Chance: An Autobiography. Berkeley: U. Calif. Press.Google Scholar
Kalman, D. 2009. Polynomia and Related Realms. Washington, D.C.: M.A.A.Google Scholar
Karamata, J. 1930. Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes. Math. Zeit., 32, 319320.Google Scholar
Katz, N.M. 1976. An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields. Pages 275–305 of: Browder, F.E. (ed), Mathematical Developments Arising from Hilbert Problems. Providence: A.M.S.Google Scholar
Katz, V.J. 1979. The history of Stokes’ theorem. Math. Mag., 52, 146156.Google Scholar
Katz, V.J. 1982. Change of variables in multiple integrals: Euler to Cartan. Math. Mag., 55, 311.Google Scholar
Katz, V.J. 1985. Differential forms—Cartan to de Rham. Archive Hist. Exact Sci., 33, 307319.Google Scholar
Katz, V.J. 1987. The calculus of the trigonometric functions. Hist. Math., 14, 311324.Google Scholar
Katz, V.J. 1995. Ideas of calculus in Islam and India. Math. Mag., 3(3), 163–174. Reprinted in Anderson, Katz, and Wilson (2004), pp. 122–130.Google Scholar
Katz, V.J. 1998. A History of Mathematics: An Introduction. Reading, MA: Addison-Wesley.Google Scholar
Khinchin, A.Y. 1998. Three Pearls of Number Theory. New York: Dover.Google Scholar
Khrushchev, S. 2008. Orthogonal Polynomials and Continued Fractions. Cambridge: Cambridge University Press.Google Scholar
Kichenassamy, S. 2010. Brahmagupta’s derivation of the area of a cyclic quadrilateral. Hist. Math., 37(1), 2861.Google Scholar
Kikuchi, D. (ed). 1891. Memoirs on Infinite Series. Tokyo: Tokio Math. Phys. Soc. Translation by D. Kikuchi.Google Scholar
Kinkelin, H. 1861–1862. Allgemeine Theorie der harmonischen Reihen, mit Anwendung auf die Zahlentheorie. Programm der Gewerbeschule Basel, 132.Google Scholar
Klein, F. 1911. Lectures on Mathematics. New York: Macmillan.Google Scholar
Klein, F. 1933. Vorlesungen über die hypergeometrische Funktion. Berlin: Springer.Google Scholar
Klein, F. 1979. Development of Mathematics in the 19th Century. Brookline, MA: Math. Sci. Press. Translated by M. Ackerman.Google Scholar
Knoebel, A., Laubenbacher, R., Lodder, J., and Pengelley, D. 2007. Mathematical Masterpieces. New York: Springer.Google Scholar
Knopp, K. 1990. Theory and Application of Infinite Series. New York: Dover.Google Scholar
Knuth, D. 1992. Two notes on notation. Am. Math. Monthly, 99, 403–422. Reprinted as chapter 2 in Knuth (2003). Addendum ‘Stirling Numbers’ published in the Monthly, vol. 102, p. 562.Google Scholar
Knuth, D. 1993. Johann Faulhaber and Sums of Powers. Math. of Computation, 61, 277294.Google Scholar
Knuth, D. 2003. Selected Papers. Stanford, CA: Center for the Study of Language and Information (CSLI),.Google Scholar
Knuth, D. 2011. The Art of Computer Programming, vol. 4A: Combinatorial Algorithms, part 1. New York: Addison-Wesley.Google Scholar
Koebe, P. 1907–1908. Über die Uniformisierung beliebiger analytischer Kurven. Gött. Nach., 1907: 191–210, 633–649; 1908: 337–358.Google Scholar
Kolmogorov, A.N. 1923. Une série de Fourier-Lebesgue divergente presque partout. Fund. Math., 4, 324328.Google Scholar
Kolmogorov, A.N., and Yushkevich, A.P. (eds). 1998. Mathematics of the 19th Century: Vol. III: Function Theory According to Chebyshev; Ordinary Differential Equations; Calculus of Variations; Theory of Finite Differences. Basel: Birkhäuser.Google Scholar
Koppelman, E. 1971. The calculus of operations and the rise of abstract algebra. Archive Hist. Exact Sci., 8, 155242.Google Scholar
Korevaar, J. 2004. Tauberian Theory. New York: Springer.Google Scholar
Kramp, C. 1796. Coefficient des allgemeinen Gliedes jeder willkürlichen Potenz eines Infinitinomiums … Pages 91–122 of: Hindenburg, C. (ed), Der polynomische Lehrsatz. Leipzig: Fleischer.Google Scholar
Kronecker, L. 1968. Mathematische Werke. New York: Chelsea. Edited by K. Hensel.Google Scholar
Kubota, K.K. 1977. Linear functional equations and algebraic independence. Pages 227–229 of: Baker, A., and Masser, D.W. (eds), Transcendence Theory. New York: Academic Press.Google Scholar
Kummer, E.E. 1836. Über die hypergeometrische Reihe. J. Reine Angew. Math., 15, 39–83, 127172.Google Scholar
Kummer, E.E. 1840. Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. J. Reine Angew. Math., 21, 74–90, 193–225, 328–371.Google Scholar
Kummer, E.E. 1847. Beitrag zur Theorie der Function Γ(x). J. Reine Angew. Math., 35, 14.Google Scholar
Kummer, E.E. 1975. Collected Papers. Berlin: Springer-Verlag. Edited by A. Weil.Google Scholar
Kung, J. (ed). 1995. Gian-Carlo Rota on Combinatorics. Boston: Birkhäuser.Google Scholar
Kuzmin, R. 1930. In Russian: On a new class of transcendental numbers. Izvestia Akad. Nauk. SSSR, 3, 583597.Google Scholar
Kuzmin, R. 1938. On the transcendental numbers of Goldbach. Trudy Leningrad Indust. Inst., 1–5, 2832.Google Scholar
Lacroix, S., Babbage, C., Herschel, J., and Peacock, G. 1816. An elementary treatise on the Differential and Integral Calculus. Cambridge: Cambridge University Press.Google Scholar
Lacroix, S.F. 1800. Traité des différences et des séries. Paris: Duprat.Google Scholar
Lacroix, S.F. 1819. Traité du calcul différentiel et du calcul intégral. Vol. 3. Paris: Courcier.Google Scholar
Lagrange, J.L. 1770–1771. Réflexions sur la résolution algébraic des équations. Nouv. Mém. Acad. Roy. Sci. Berlin, 1770 [1772]: 134–215; 1771 [1773]: 138–253. Reprinted in Lagrange’s Oeuvres, vol. 3, pp. 205421.Google Scholar
Lagrange, J.L. 1771. Démonstration d’un théorèm nouveau concernant les nombres premiers. Nouv. Mém. Acad. Roy. Sci. Belles-Let., 1771, 125–137. Reprinted in Oeuvres, vol. 3, pp. 425–438.Google Scholar
Lagrange, J.L. 1772. Sur une nouvelle espèce de calcul relatif à la différentiation et à l’intégration des quantités variables. Nouv. Mém. Acad. Roy. Sci. Belle-lettres Berlin, 441–476.Google Scholar
Lagrange, J.L. 1781. Sur la construction des cartes géographique. Nouv. Mém. Acad. Roy. Sci. Berlin, 161–210. Reprinted in Lagrange (1867–1892) vol. 4, pp. 637692.Google Scholar
Lagrange, J.L. 1797. Théorie des fonctions analytiques. Paris: Imprim. de la Répub.Google Scholar
Lagrange, J.L. 1867–1892. Oeuvres. Paris: Gauthier-Villars. Edited by J. Serret.Google Scholar
Laguerre, E. 1882. Sur quelques équations transcendantes. Comptes Rendus, 94, 160163.Google Scholar
Laguerre, E. 1972. Oeuvres. New York: Chelsea. Edited by C. Hermite, H. Poincaré, and E. Rouché.Google Scholar
Lambert, J.H. 1768. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques. Hist. Akad. Berlin, 1761, 17, 265–322. See Lambert’s Opera mathematica (1946, 1948), Zurich: Füssli, vol. I, pp. 194–212 and vol. 2, pp. 112–159.Google Scholar
Landau, E. 1903. Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Math. Ann., 56, 645670.Google Scholar
Landau, E. 1904. Über eine Verallgemeinerung des Picardschen Satzes. S.B. Preuss. Akad. Wiss., 38, 11181133.Google Scholar
Landau, E. 1906. Euler und die Funktionalgleichung der Riemannschen Zetafunktion. Bib. Math., 7, 6979.Google Scholar
Landau, E. 1907a. Sur quelques généralisations du théorème de M. Picard. Ann. École Norm. Sup., 24, 179201.Google Scholar
Landau, E. 1907b. Über die Konvergenz einiger Klassen von unendlichen Reihen am Rande des Konvergenzgebietes. Monatsh. Math. Phys., 18, 828.Google Scholar
Landau, E. 1907c. Über einen Konvergenzsatz. Gött. Nach., 8, 2527.Google Scholar
Landau, E. 1910. Über die Bedeutung einiger neuen Grentzwertsätze der Herren Hardy und Axer. Prace Mat.-Fiz., 21, 97177.Google Scholar
Landen, J. 1758. A Discourse Concerning The Residual Analysis. London: Nourse.Google Scholar
Landen, J. 1760. A new method of computing the sums of certain series. Phil. Trans. Roy. Soc. London, 51, 553565.Google Scholar
Landen, J. 1771. A Disquisition concerning Certain Fluents, which are Assignable by the Arcs of the Conic SectionsPhil. Trans., 61, 298309.Google Scholar
Landen, J. 1775. An Investigation of a General Theorem for Finding the Length of Any Arc of Any Conic HyperbolaPhil. Trans., 65, 283289.Google Scholar
Landis, E.M. 1993. About mathematics at Moscow State University in the late 1940s and early 1950s. Pages 55–73 of: Zdravkovska, S., and Duren, P. (eds), Golden Years of Moscow Mathematics. Providence: A.M.S.Google Scholar
Lanzewizky, I.L. 1941. Über die orthogonalität der Fejér-Szegőschen polynome. D. R. Dokl. Acad. Sci. URSS, 31, 199200.Google Scholar
Laplace, P.S. 1782. Mémoire sur les suites. Mém. Acad. Roy. Sci. Paris, 207309.Google Scholar
Laplace, P.S. 1812. Théorie analytique des probabilités. Paris: Courcier.Google Scholar
Laplace, P.S. 1814. Théorie analytique des probabilités, seconde édition, revue et augmentée par l’auteur. Paris: Courcier.Google Scholar
Lascoux, A. 2003. Symmetric Functions and Combinatorial Operators on Polynomials. Providence: A.M.S.Google Scholar
Laudal, O.A., and Piene, R. (eds). 2002. The Legacy of Niels Henrik Abel. Berlin: Springer.Google Scholar
Laugwitz, D. 1999. Bernhard Riemann 1826–1866. Boston: Birkhäuser. Translated by A. Shenitzer.Google Scholar
Lebedev, N.A., and Milin, I.M. 1965. In Russian: An inequality. Vestnik Leningrad University, 20, 157158.Google Scholar
Lebesgue, H. 1902. Intégrale, longueur, aire. Annali Mat. Pura. App., 7, 231359.Google Scholar
Lebesgue, H. 1906. Leçons sur les séries trigonométriques. Paris: Gauthier-Villars.Google Scholar
Lebesgue, V.A. 1837. Researches sur les nombres. J. Math Pures Appl., 2, 253292.Google Scholar
Lebesgue, V.A. 1838. Researches sur les nombres. J. Math Pures Appl., 3, 113144.Google Scholar
Legendre, A.M. 1794. Éléments de Géométrie avec des notes. Paris: Didot.Google Scholar
Legendre, A.M. 1811–1817. Exercices de calcul intégral. Paris: Courcier.Google Scholar
Legendre, A.M. 1825–1828. Traité des fonctions elliptiques. Paris: Huzard-Courcier.Google Scholar
Legendre, A.M. 1830. Théorie des nombres. Paris: Didot.Google Scholar
Legendre, A.M. 1885. Recherches sur l’attraction des sphéroïdes homogènes. Mém. Math. Phys. prés. à Acad. Roy. Sci., 10, 411435.Google Scholar
Leibniz, G.W. 1684. Nova methodus pro maximis et minimis, itemque tangentibus, … Acta Erud., 3, 467–473. Reprinted in Leibniz (1971) vol. 5, pp. 220–225.Google Scholar
Leibniz, G.W. 1713. Epistola ad V. Cl. Christianium Wolfium. Acta Erud., Supp. 5 , 1713, 264–270.Google Scholar
Leibniz, G.W. 1920. The Early Mathematical Manuscripts of Leibniz. Chicago: Open Court. Translated with extensive notes by J.M. Child.Google Scholar
Leibniz, G.W. 1971. Mathematische Schriften. Hildesheim, Germany: Georg Olms Verlag. edited by K. Gerhardt.Google Scholar
Leibniz, G.W., and Bernoulli, Joh. 1745. Commercium philosophicum et mathematicum. Geneva: Bosquet.Google Scholar
Leibniz, G.W., and Knobloch, E. 1993. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis. Göttingen: Vandenhoeck and Ruprecht. Presented with commentary by E. Knobloch; translation into German by O. Hamborg.Google Scholar
Lemmermeyer, F. 2000. Reciprocity Laws. New York: Springer-Verlag.Google Scholar
Lewin, L. 1981. Polylogarithms and Associated Functions. Amsterdam: Elsevier.Google Scholar
Li, Y., and Du, S. 1987. Chinese mathematics: A concise history. Oxford: Clarendon. Translated by J. Crossley and A. Lun.Google Scholar
Lindelöf, E. 1902. Mémoire sur la théorie des fonctions entières de genre fini. Acta Soc. Sci. Fennicae, 31, 179.Google Scholar
Lindemann, F. 1882. Über die Zahl π. Math. Ann., 20, 213225.Google Scholar
Liouville, J. 1832. Sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. École Polytech., 13, 169.Google Scholar
Liouville, J. 1837a. Note sur le développement de (1 − 2xz + z 2 )−1/2 . J. Math. Pures App., 2, 135139.Google Scholar
Liouville, J. 1837b. Sur la sommation d’une série. J. Math. Pures Appl., 2, 107108.Google Scholar
Liouville, J. 1839. Note sur quelques intégrales définies. J. Math. Pures Appl, 4, 225235.Google Scholar
Liouville, J. 1841. Remarques nouvelles sur l’équation de Riccati. J. Math. Pures Appl., 6, 113.Google Scholar
Liouville, J. 1851. Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques. J. Math. Pures Appl., 16, 133142.Google Scholar
Liouville, J. 1857. Sur l’expression ϕ(n), qui marque combien la suite 1,2,3,…,n contient de nombres premiers à n. J. Math. Pures Appl., 2, 110112.Google Scholar
Liouville, J. 1880. Leçons sur les fonctions doublement périodiques. J. Reine Angew. Math., 88, 277310.Google Scholar
Lipschitz, R. 1889. Untersuchungen der Eigenschaften einer Gattung von unendlichen Riehen. J. Reine Angew. Math., 105, 127156.Google Scholar
Littlewood, J.E. 1911. The converse of Abel’s theorem on power series. Proc. London Math. Soc., 9, 434448.Google Scholar
Littlewood, J.E. 1925. On inequalities in the theory of functions. Proc. London Math. Soc., 23, 481–519. Reprinted in Littlewood (1982) vol. 2, pp. 9631004.Google Scholar
Littlewood, J.E. 1982. Collected Papers. Oxford: Clarendon.Google Scholar
Littlewood, J.E. 1986. Littlewood’s Miscellany. Cambridge: Cambridge University Press.Google Scholar
Littlewood, J.E., and Paley, R. 1932. A proof that an odd schlicht function has bounded coefficients. J. London Math. Soc., 7, 167–169. Reprinted in Littlewood (1982) vol. 2, pp. 10461048.Google Scholar
Loewner, C. 1988. Collected Papers. Boston: Birkhäuser. Edited by L. Bers.Google Scholar
Lototskii, A.V. 1943. Sur l’irrationalité d’un produit infini. Mat. Sb., 12, 262272.Google Scholar
Lusin, N. 1913. Sur la convergence des séries trigonométriques de Fourier. Comptes Rendus., 156, 16551658.Google Scholar
Lützen, J. 1990. Joseph Liouville. New York: Springer-Verlag.Google Scholar
Maclaurin, C. 1729. A second letter to Martin Folkes, Esq.: Concerning the roots of equations, with the demonstration of other rules in algebra. Phil. Trans. Roy. Soc., 36, 5996.Google Scholar
Maclaurin, C. 1742. A Treatise of Fluxions. Edinburgh: Ruddimans.Google Scholar
Maclaurin, C. 1748. A Treatise of Algebra. London: Millar and Nourse.Google Scholar
Macmahon, P. 1915–1916. Combinatory Analysis. Cambridge: Cambridge University Press.Google Scholar
MacMahon, P. A. 1978. Collected Papers. Cambridge, MA: MIT Press. Edited by G. Andrews.Google Scholar
Mahlburg, K. 2005. Partition congruences and the Andrews-Garvan-Dyson crank. Proc. Nat. Acad. Sci. USA, 102 (43), 1537315376.Google Scholar
Mahler, K. 1982. Fifty years as a mathematician. J. Number Theory, 14, 121–155. Corrected version on the online Kurt Mahler Archive.Google Scholar
Mahnke, D. 1912–1913. Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung. Bib. Math., 13, 2961.Google Scholar
Mahoney, M.S. 1973. The Mathematical Career of Pierre de Fermat (1601–1665). Princeton: Princeton University Press.Google Scholar
Malet, A. 1993. James Gregorie on tangents and the Taylor rule. Archive Hist. Exact Sci, 46, 97138.Google Scholar
Malmsten, C. J. 1849. De integralibus quibusdam definitis. J. Reine Angew. Math., 38, 139.Google Scholar
Manders, K. 2006. Algebra in Roth, Faulhaber and Descartes. Hist. Math., 33, 184209.Google Scholar
Manning, K. R. 1975. The emergence of the Weierstrassian approach to complex analysis. Archive Hist. Exact Sci., 14, 297383.Google Scholar
Maor, E. 1998. Tirgonometric Delights. Princeton: Princeton University Press.Google Scholar
Martzloff, J.C. 1997. A History of Chinese Mathematics. New York: Springer.Google Scholar
Masani, P.R. 1990. Norbert Wiener. Basel: Birkhäuser.Google Scholar
Mathews, G.B. 1961. Theory of Numbers. New York: Chelsea.Google Scholar
Maxwell, J.C. 1873. A Treatise on Electricity and Magnetism. Oxford: Clarendon.Google Scholar
Maz’ya, V., and Shaposhnikova, T. 1998. Jacques Hadamard. Providence: A.M.S., London Math. Soc. Translated by P. Basarab-Horwath.Google Scholar
McClintock, E. 1881. On the remainder of Laplace’s series. Amer. J. Math., 4, 9697.Google Scholar
Mclarty, C. 2012. Hilbert on Theology and its Discontents: The Origin of Myth in Modern Mathematics. Pages 105–129 of: Doxiadis, A., and Mazur, B. (eds), Circles Disturbed. Princeton: Princeton University Press.Google Scholar
Mehta, M.L., and Dyson, F.J. 1963. Statistical theory of energy levels of complex systems: V. J. Math. Phys., 4, 713719.Google Scholar
Meijering, E. 2002. A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. I.E.E.E., 90, 319–342.Google Scholar
Meixner, J. 1934. Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc., 9, 613.Google Scholar
Mengoli, P. 1650. Novae quadraturae arithmeticae seu de additione fractionum. Bologna: Montij.Google Scholar
Méray, C. 1869. Remarques sur la nature des quantités définies par la condition de servir de limites à des variables données. Revue des Soc. Savantes, 4, 280289.Google Scholar
Méray, C. 1888. Valeur de l’intégrale définie ∫0 e −x2 dx déduite de la formule de Wallis. Bull. Sci. Math., 12, 174176.Google Scholar
Mercator, N. 1668. Logarithmotechnia. Godbid.Google Scholar
Mertens, F. 1874a. Ein Beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math., 78, 4662.Google Scholar
Mertens, F. 1874b. Ueber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math., 77, 289338.Google Scholar
Mertens, F. 1875. Über die Multiplicationsregel für zwei unendliche Reihen. J. Reine Angew. Math., 79, 182184.Google Scholar
Mertens, F. 1895. Über das nichtverschwinden Dirichletscher Reihen mit reellen Gliedern. S.B. Kais. Akad. Wiss. Wien, 104(Abt. 2a), 1158–1166.Google Scholar
Mertens, F. 1897. Über Dirichlet’s Beweis des Satzes, dass jede unbegrenzte ganzzahlige arithmetische Progression, deren Differentz zu ihren Gliedern teilerfreund ist, unendliche viele Primzahlen darstellt. S.B. Kais. Akad. Wiss. Wien, 106, 254286.Google Scholar
Merzbach, U. 2018. Dirichlet: A Mathematical Biography. Cham: Birkhäuser.Google Scholar
Meschkowski, H. 1964. Ways of Thought of Great Mathematicians. San Francisco: Holden-Day. Translated by J. Dyer-Bennett.Google Scholar
Mikami, Y. 1914. On the Japanese theory of determinants. Isis, 2, 936.Google Scholar
Mikami, Y. 1974. The Development of Mathematics in China and Japan. New York: Chelsea.Google Scholar
Milin, I.M. 1964. The area method in the theory of univalent functions, English translation. Soviet Math. Dokl., 5, 7881.Google Scholar
Milin, I.M. 1986. Comments on the Proof of the Conjecture on Logarithmic Coefficients. Pages 109–112 of: Baernstein, A. (ed), The Bieberbach Conjecture. Providence: A.M.S.Google Scholar
Milne-Thomson, L.M. 1981. The calculus of finite differences. New York: Chelsea.Google Scholar
Mittag-Leffler, G. 1923. An introduction to the theory of elliptic functions. Ann. of Math., 24, 271351.Google Scholar
Miyake, K. 1994. The establishment of the Takagi-Artin class field theory. Pages 109–128 of: Sasaki, C., Sugiura, M., and Dauben, J.W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Möbius, A.F. 1832. Über eine besondere Art von Umkehrung der Reihen. J. Reine Angew. Math., 9, 105123.Google Scholar
Moll, V. 2002. The evaluation of integrals: A personal story. Notices A.M.S., 311–317.Google Scholar
Monsky, P. 1994. Simplifying the proof of Dirichlet’s theorem. Am. Math. Monthly, 100, 861862.Google Scholar
Montmort, P.R. de. 1717. De seriebus infinitis tractatus. Phil. Trans. Roy. Soc., 30, 633675.Google Scholar
Moore, G.H. 1982. Zermelo’s Axiom of Choice. New York: Springer-Verlag.Google Scholar
Morrison, P., and Morrison, E. (eds). 1961. Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage. New York: Dover.Google Scholar
Muir, T. 1960. The Theory of Determinants in the Historical Order of Development. New York: Dover.Google Scholar
Mukhopadhyay, A. 1889a. The geometric interpretation of Monge’s differential equation to all conics. J. Asiatic Soc. of Bengal, 58, 181185.Google Scholar
Mukhopadhyay, A. 1889b. On a curve of aberrancy. J. Asiatic Soc. of Bengal, 59, 6163.Google Scholar
Mukhopadhyay, S. 1909. New methods in the geometry of the plane arc. Bull. Calcutta Math. Soc., 1, 3137.Google Scholar
Mukhopadhyaya (Mookerjee), A. 1998. A Diary of Asutosh Mookerjee. Calcutta: Mitra and Ghosh.Google Scholar
Mullin, R., and Rota, G.-C. 1970. On the Foundations of Combinatorial Theory: III. Theory of Binomial Enumeration. Pages 167–213 of: Harris, B. (ed), Graph Theory and its Applications. New York: Acad. Press. Reprinted in 1995 in Gian-Carlo Rota on Combinatorics, Ed. J. Kung, Boston: Birkhäuser, pp. 118–147.Google Scholar
Murphy, R. 1833a. Elementary Principles of the Theories of Electricity, Heat, and Molecular Actions, Part I. Cambridge: Cambridge University Press.Google Scholar
Murphy, R. 1833b. On the inverse method of definite integrals, with physical applications. Trans. Cambridge Phil. Soc., 4, 353408.Google Scholar
Murphy, R. 1833c. Resolution of Algebraical Equations. Trans. Cambridge Phil. Soc., 4, 125153.Google Scholar
Murphy, R. 1835. Second memoir on the inverse method of definite integrals. Trans. Cambridge Phil. Soc., 5, 113148.Google Scholar
Murphy, R. 1837. First memoir on the theory of analytic operations. Phil. Trans. Roy. Soc. London, 127, 179210.Google Scholar
Murphy, R. 1839. A Treatise on the Theory of Algebraical Equations. London: Society for Diffusion of Useful Knowledge.Google Scholar
Mustafy, A. K. 1966. A new representation of Riemann’s zeta function and some of its consequences. Norske Vid. Selsk. Forh., 39, 96100.Google Scholar
Mustafy, A.K. 1972. On a criterion for a point to be a zero of the Riemann zeta function. J. London Math. Soc. (2), 5, 285–288.Google Scholar
Narasimhan, R. 1991. The coming of age of mathematics in India. Pages 235–258 of: Hilton, P., Hirzebruch, F., and Remmert, R. (eds), Miscellanea Mathematica. New York: Springer.Google Scholar
Narayana. 200l. The Ganita Kamudi of Narayana Pandit, Chapter 13. Ganita Bharati, 23, 18–82. English translation with notes by Parmanand Singh.Google Scholar
Narkiewicz, W. 2000. The Development of Prime Number Theory. New York: Springer.Google Scholar
Needham, J. 1959. Science and Civilization in China, vol. 3: Mathematics and the Sciences of the Heavens and the Earth. New York: Cambridge University Press.Google Scholar
Nesterenko, Yu. V. 2006. Hilbert’s seventh problem. Pages 269–282 of: Bolibruch, A. A., Osipov, Yu. S., and Sinai, Ya. G. (eds), Mathematical Events of the Twentieth Century. Berlin: Springer. Translated by L.P. Kotova.Google Scholar
Neuenschwander, E. 1978. The Casorati–Weierstrass theorem. Hist. Math., 5, 139166.Google Scholar
Neumann, O. 2007a. Cyclotomy: From Euler through Vandermonde to Gauss. Pages 323–362 of: Bradley, R.E., and Sandifer, C.E. (eds), Leonhard Euler: Life, Work and Legacy. Amsterdam: Elsevier.Google Scholar
Neumann, O. 2007b. The Disquisitiones Arithmeticae and the theory of equations. Pages 107–128 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Neumann, P. (ed). 2011. The mathematical writings of Évariste Galois. Zurich: European Math. Soc. Translated with commentary by P. Neumann.Google Scholar
Nevai, P. 1990. Orthogonal Polynomials: Theory and Practice. Dordrecht: Kluwer.Google Scholar
Nevanlinna, R. 1925. Zur Theorie der meromorphen Funktionen. Acta Math., 46, 199.Google Scholar
Nevanlinna, R. 1974. Le théorème de Picard–Borel et la théorie des fonctions méromorphes. New York: Chelsea.Google Scholar
Nevanlinna, R., and Paatero, V. 1982. Introduction to Complex Analysis, 2nd edition. Providence: A.M.S. Chelsea. Translated by T. Kövari and G.S. Goodman.Google Scholar
Newman, F.W. 1848. On Γ(a), especially when a is negative. Cambridge and Dublin Math. J., 3, 5763.Google Scholar
Newton, I. 1959–1960. The Correspondence of Isaac Newton. Cambridge: Cambridge University Press. Edited by H.W. Turnbull.Google Scholar
Newton, I. 1964–1967. The Mathematical Works of Isaac Newton. New York: Johnson Reprint. Edited with introduction by D.T. Whiteside.Google Scholar
Newton, I. 1967–1981. The Mathematical Papers of Isaac Newton. Cambridge: Cambridge University Press. Edited by D.T. Whiteside.Google Scholar
Nicole, F. 1717. Traité du calcul des différences finies. Hist. Acad. Roy. Sci., 7–21.Google Scholar
Nicole, F. 1727. Méthode pour sommer une infinité de suites nouvelles, dont on ne peut trouver les sommes par les Méthodes connues. Mém. Acad. Roy. Sci. Paris, 257268.Google Scholar
Nikolić, A. 2009. The story of majorizability as Karamata’s condition of convergence for Abel summable series. Hist. Math., 36, 405419.Google Scholar
Nilakantha. 1977. Tantrasangraha of Nilakantha Somayaji, with Yuktidipika and Laghu-vivrti. Hoshiarpur, India: Punjab University Edited by K.V. Sarma.Google Scholar
Nörlund, N.E. 1923. Mémoire sur le calcul aux différences finies. Acta Math., 44, 71212.Google Scholar
Nörlund, N.E. 1924. Vorlesungen über Differenzenrechnung. Berlin: Springer.Google Scholar
Ogawa, T., and Morimoto, M. 2018. Mathematics of Takebe Katahiro and History of Mathematics in East Asia. Tokyo: Math. Soc. Japan.Google Scholar
Olver, P.J. 1999. Classical Invariant Theory. Cambridge: Cambridge University Press.Google Scholar
Ore, Ø. 1974. Niels Henrik Abel: Mathematician Extraordinary. Providence: A.M.S.Google Scholar
Ostrogradsky, M.V. 1845. De l’integration des fractions rationelles. Bull. Physico-Math. Acad. Sci St. Pétersbourg, 4, 145–167 and 268–300.Google Scholar
Ozhigova, E.P. 2007. The part played by the Petersburg Academy of Sciences (the Academy of Sciences of the USSR) in the publication of Euler’s collected works. Pages 53–74 of: Bogolyubov, N.N., Mikhaĭlov, G.K., and Yushkevich, A.P. (eds), Euler and Modern Science. Washington, D.C.: M.A.A.Google Scholar
Papperitz, E. 1889. Ueber die Darstellung der hypergeometrischen Transcendenten durch eindeutige Functionen. Math. Ann., 34, 247296.Google Scholar
Parameswaran, S. 1983. Madhava of Sangamagramma. J. Kerala Studies, 10, 185217.Google Scholar
Patterson, S.J. 2007. Gauss sums. Pages 505–528 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Peacock, G. 1843–1845. Treatise on Algebra. Cambridge: Cambridge University Press.Google Scholar
Peano, G. 1973. Selected Works. London: Allen and Unwin. Edited by H.C. Kennedy.Google Scholar
Peirce, B. 1881. Linear Associative Algebra, with Notes and Addenda by C.S. Peirce. Amer. J. Math., 4, 97229.Google Scholar
Pepper, J.V. 1968. Harriot’s calculation of the meridional parts as logarithmic tangents. Archive Hist. Exact Sci., 4, 359413.Google Scholar
Perron, O. 1929. Die Lehre von den Kettenbrüchen, second edition. Leipzig: Teubner.Google Scholar
Peters, C.A. (ed). 1860–1865. Briefwechsel zwischen C.F. Gauss und H.C. Schumacher, vols. 1–5. Altona: Esch.Google Scholar
Petrovski, I.G. 1966. Ordinary Differential Equations. Englewood Cliffs, N.J.: Prentice-Hall. Translated by R.A. Silverman.Google Scholar
Pfaff, J. 1797a. Disquisitiones analyticae. Helmstadii: Fleckheisen.Google Scholar
Pfaff, J. 1797b. Observationes analyticae ad L. Euleri Institutiones Calculi Integralis. Supplement IV, Historie de 1793, Nova Acta Acad. Sci. Petropolitanae, XI, 3857.Google Scholar
Picard, É. 1879. Sur une propriété des fonctions entières. Comptes Rendus, 88, 10241027.Google Scholar
Pick, G. 1915. Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche. Math. Ann., 77, 16.Google Scholar
Pieper, H. (ed). 1998. Korrespondenz zwischen Legendre und Jacobi. Leipzig: Teubner.Google Scholar
Pieper, H. 2007. A network of scientific philanthropy: Humboldt’s relations with number theorists. Pages 201–234 of: Goldstein, C., Schappacher, N., and Schwermer, J. (eds), The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae. New York: Springer.Google Scholar
Pierpoint, W. S. 1997. Edward Stone (1702–1768) and Edmund Stone (1700–1768): Confused Identities Resolved. Notes and Records Roy. Soc. London, 51, 211217.Google Scholar
Pierpont, J. 1904. The history of mathematics in the nineteenth century. Bull. A.M.S., 11, 136–159. Reprinted in 2000 in the Bulletin, vol. 37, pp. 9–24.Google Scholar
Pietsch, A. 2007. History of Banach Spaces and Linear Operators. Boston: Birkhäuser.Google Scholar
Pingree, D. 1970–1994. Census of the exact sciences in Sanskrit. Amer. Phil. Soc., 81 , 86, 111, 146, 213.Google Scholar
Pitt, H.R. 1938. General Tauberian theorems. Proc. London Math. Soc., 44, 243288.Google Scholar
Plofker, K. 2009. Mathematics in India. Princeton: Princeton University Press.Google Scholar
Poincaré, H. 1883. Sur les fonctions entières. Bull. Soc. Math. France, 11, 136144.Google Scholar
Poincaré, H. 1886. Sur les intégrales irrégulières des équations linéaires. Acta Math., 8, 295344.Google Scholar
Poincaré, H. 1907. Sur l’uniformisation des fonctions analytiques. Acta Math., 31, 164.Google Scholar
Poincaré, H. 1985. Papers on Fuchsian Functions. New York: Springer-Verlag. Translated by J. Stillwell.Google Scholar
Poisson, S.D. 1808. Mémoire sur la propagation de la chaleur dans les corps solides (extrait). Nouv. Bull. Sci. Soc. Philom. Paris, 1, 112116.Google Scholar
Poisson, S.D. 1823. Suite du mémoire sur les intégrales définies et sur la sommation des séries. J. École Poly., 12, 404509.Google Scholar
Poisson, S.D. 1826. Sur le calcul numérique des intégrales définies. Mém. Acad. Sci. France, 6, 571602.Google Scholar
Polignac, A. de. 1857. Recherches sur les nombres premiers. Comptes Rendus., 45, 575580.Google Scholar
Pólya, G. 1974. Collected Papers. Cambridge, MA: MIT Press. Edited by Ralph Boas.Google Scholar
Pommerenke, C. 1985. The Bieberbach conjecture. Math. Intelligencer, 7(2), 2325; 32.Google Scholar
Popoff, A. 1861. Sur le reste de la série de Lagrange. Comptes Rendus, 53, 795798.Google Scholar
Prasad, G. 1931. Six Lectures on the Mean-Value Theorem of the Differential Calculus. Calcutta: Calcutta University Press.Google Scholar
Prasad, G. 1933. Some Great Mathematicians of the Nineteenth Century. Benares, India: Benares Mathematical Society.Google Scholar
Pringsheim, A. 1900. Zur Geschichte des Taylorschen Lehrsatzes. Bibliotheca Math., 3, 433479.Google Scholar
Probst, S. 2015. Leibniz as reader and second inventor: the cases of Barrow and Mengoli. Pages 111–134 of: Goethe, N., Beeley, P., and Rabouin, D. (eds), G.W. Leibniz, Interrelation between Mathematics and Philosophy. Dordrecht: Springer.Google Scholar
Purkert, W., and Ilgauds, H.J. 1985. Georg Cantor. Leipzig: Vieweg and Teubner.Google Scholar
Rabuel, C. 1730. Commentaires sur la géométrie de M. Descartes. Lyon: M. Duplain.Google Scholar
Rajagopal, C.T. 1949. A neglected chapter of Hindu mathematics. Scripta Math., 15, 201209.Google Scholar
Rajagopal, C.T., and Rangachari, M.S. 1977. On the untapped source of medieval Keralese mathematics. Archive Hist. Exact Sci., 18, 89102.Google Scholar
Rajagopal, C.T., and Rangachari, M.S. 1986. On medieval Keralese mathematics. Archive Hist. Exact Sci., 35, 9199.Google Scholar
Rajagopal, C.T., and Vedamurtha Aiyar, T.V. 1951. On the Hindu proof of Gregory’s series. Scripta Math., 17, 6574.Google Scholar
Rajagopal, C.T., and Venkataraman, A. 1949. The sine and cosine power series in Hindu mathematics. J. Roy. Asiatic Soc. Bengal, Sci., 15, 113.Google Scholar
Ramanujan, S. 1911. Some properties of Bernoulli numbers. J. Indian Math. Soc., 3, 219234.Google Scholar
Ramanujan, S. 1917. A series for Euler’s constant γ . Messenger Math., 46, 7380.Google Scholar
Ramanujan, S. 1919a. Proof of certain identities in combinatory analysis. Proc. Camb. Phil. Soc., 19, 214–216. Reprinted in Ramanujan (2000), pp. 214–215.Google Scholar
Ramanujan, S. 1919b. Some properties of p(n), the number of partitions of n. Proc. Camb. Phil. Soc., 19, 207–210. Reprinted in Ramanujan (2000), pp. 210–213.Google Scholar
Ramanujan, S. 1988. The Lost Notebook and Other Unpublished Papers. Delhi: Narosa Publishing House. Introduction by G. Andrews.Google Scholar
Ramanujan, S. 2000. Collected Papers. Providence: A.M.S. Chelsea. Edited by G.H. Hardy, P.V. Seshu Aiyar, B. M. Wilson, with extensive commentary by B. Berndt.Google Scholar
Rashed, R. 1970. al-Karaji. Pages 240–246 of: Dictionary of scientific biography, volume 7. New York: Scribners.Google Scholar
Rashed, R. 1980. Ibn al-Haytham et le théorème de Wilson. Archive Hist. Exact Sci., 22, 305321.Google Scholar
Rassias, T.M., Srivastava, H.M., and Yanushauskas, A. 1993. Topics in Polynomials of One and Several Variables and Their Applications. Singapore: World Scientific.Google Scholar
Raussen, M., and Skau, C. 2010. Interview with Mikhail Gromov. Notices A.M.S., 57, 391–403.Google Scholar
Remmert, R. 1991. Theory of Complex Functions. New York: Springer-Verlag. Translated by R. Burckel.Google Scholar
Remmert, R. 1996. Wielandt’s theorem about the Γ-function. Am. Math. Monthly, 103, 214220.Google Scholar
Remmert, R. 1998. Classical Topics in Complex Function Theory. New York: Springer-Verlag. Translated by Leslie Kay.Google Scholar
Riccati, J. 1724. Animadversationes in aequationes differentiales. Acta Erud., Supp. 8 , 1724, 66–73.Google Scholar
Riemann, B. 1859. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Berlin. Akad., 671–680.Google Scholar
Riemann, B. 1899. Elliptische Functionen. Vorlesungen von Bernhard Riemann. Mit Zusätzen herausgegeben von Hermann Stahl. Leipzig: Teubner. Edited by H. Stahl.Google Scholar
Riemann, B. 1990. Gesammelte Mathematische Werke. New York: Springer-Verlag. Edited by R. Dedekind, H. Weber, R. Narasimham, and E. Neuenschwander.Google Scholar
Riesz, F. 1909. Sur les opérations fonctionnelles linéaires. Comptes Rendus, 149, 974977.Google Scholar
Riesz, F. 1910. Untersuchungen über Systeme integrierbarer Funktionen. Math. Ann., 69, 449–497. Reprinted in Riesz (1960) vol. 1, pp. 441–489.Google Scholar
Riesz, F. 1913. Les systèmes d’équations linéaires a une infinité d’inconnues. Paris: Gauthier-Villars.Google Scholar
Riesz, F. 1960. Oeuvres complètes. Budapest: Académie des Sciences de Hongrie. Edited by Á. Császár.Google Scholar
Riesz, M. 1928. Sur les fonctions conjugées. Math. Z., 27, 218–44.Google Scholar
Rigaud, S.P. (ed). 1841. Correspondence of Scientific Men of the Seventeenth Century. Oxford: Oxford University Press.Google Scholar
Robertson, M.S. 1936. A remark on the odd schlicht functions. Bull. A.M.S., 42, 366–370.Google Scholar
Robins, B. 1727. A demonstration of the 11th proposition of Sir Isaac Newton’s treatise on Quadrature. Phil. Trans. Roy. Soc., 34, 230236.Google Scholar
Rodrigues, O. 1816. Mémoire sur l’attraction des sphéroids. Correspondance École Poly., 3, 361385.Google Scholar
Rodrigues, O. 1839. Note sur les inversions, ou dérangements produits dans les permutations. J. Math. Pures Appl., 4, 236240.Google Scholar
Rogers, L.J. 1888. An extension of a certain theorem in inequalities. Messenger Math., 17, 145150.Google Scholar
Rogers, L.J. 1893a. Note on the transformation of an Heinean series. Messenger Math., 23, 2831.Google Scholar
Rogers, L.J. 1893b. On a three-fold symmetry in the elements of Heine’s series. Proc. London Math. Soc., 24, 171179.Google Scholar
Rogers, L.J. 1893c. On the expansion of some infinite products. Proc. London Math. Soc., 24, 337352.Google Scholar
Rogers, L.J. 1894. Second memoir on the expansion of certain infinite products. Proc. London Math. Soc., 25, 318343.Google Scholar
Rogers, L.J. 1895. Third memoir on the expansion of certain infinite products. Proc. London Math. Soc., 26, 1532.Google Scholar
Rogers, L.J. 1907. On function sum theorems connected with the seriesn=1 xnn2 . Proc. London Math. Soc., 4, 169189.Google Scholar
Rogers, L.J. 1917. On two theorems of combinatory analysis and some allied identities. Proc. London Math. Soc., 16, 321327.Google Scholar
Rolle, M. 1690. Traité d’algebre. Paris: Michallet.Google Scholar
Rolle, M. 1691. Démonstration d’une Méthode pour résoudre les égalitez de tous les degréz. Paris: Cusson.Google Scholar
Roquette, P. 2002. The Riemann hypothesis in characteristic p, its origin and development. Part I. The formation of the zeta-functions of Artin and of F. K. Schmidt. Mitt. Math. Ges. Hamburg, 21, 79157.Google Scholar
Roquette, P. 2004. The Riemann hypothesis in characteristic p, its origin and development. Part II. The first steps by Davenport and Hasse. Mitt. Math. Ges. Hamburg, 23, 574.Google Scholar
Roquette, P. 2018. The Riemann Hypothesis in Characteristic p in Historical Perspective. Switzerland: Springer Nature.Google Scholar
Rosen, M. 2002. Number Theory in Function Fields. New York: Springer.Google Scholar
Rothe, H.A. 1811. Systematisches Lehrbuch der Arithmetik. Erlangen: Barth.Google Scholar
Rowe, D.E., and McCleary, J. 1989. The History of Modern Mathematics. Boston: Academic Press.Google Scholar
Roy, R. 1990. The discovery of the series formula for π by Leibniz, Gregory and Nilakantha. Math. Mag., 63(5), 291–306. Reprinted in Anderson, Katz, and Wilson (2004), pp. 111–121.Google Scholar
Roy, R. 1993. The Work of Chebyshev on Orthogonal Polynomials. Pages 495–512 of: Rassias, T., Srivastava, H., and Yanushauskas, A. (eds), Topics in Polynomials of one and Several Variables and their Applications. Singapore: World Scientific.Google Scholar
Roy, R. 2017. Elliptic and Modular Functions. Cambridge: Cambridge University Press.Google Scholar
Ru, M. 2001. Nevanlinna Theory and its Relation to Diophantine Approximation. Singapore: World Scientific.Google Scholar
Rudin, W. 1966. Real and Complex Analysis. New York: McGraw-Hill.Google Scholar
Saalschütz, L. 1890. Eine Summationsformel. Zeit. Math. Phys., 35, 186188.Google Scholar
Salmon, G. 1879. A Treatise on the Higher Plane Curves, third edition. Dublin: Hodges, Foster, and Figgis.Google Scholar
Sandifer, C.E. 2007. The Early Mathematics of Leonhard Euler. Washington, D.C.: M.A.A.Google Scholar
Sarma, K.V. 1972. A History Of The Kerala School Of Hindu Astronomy. Hoshiarpur, India: Punjab UniversityGoogle Scholar
Sarma, K.V., and Hariharan, S. 1991. Yuktibhasa of Jyesthadeva. Indian J. Hist. Sci., 26(2), 185207.Google Scholar
Sasaki, C. 1994. The adoption of Western mathematics in Meiji Japan, 1853–1903. Pages 165–186 of: Sasaki, C., Sugiura, M., and Dauben, J.W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Sasaki, C., Sugiura, M., and Dauben, J. W. (eds). 1994. The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Schaar, M. 1850. Recherches sur la théorie des résidues quadratiques. Mém. couronnés et mém. savants étrangers Acad. Roy. Sci. Belgique, 25, 120.Google Scholar
Scharlau, W., and Opolka, H. 1984. From Fermat to Minkowski: Lectures on the Theory of Numbers and its Historical Development. New York: Springer.Google Scholar
Schellbach, K. 1854. Die einfachsten periodischen Functionen. J. Reine Angew. Math., 48, 207236.Google Scholar
Schlömilch, O. 1843. Einiges über die Eulerischen Integrale der zweiten Art. Archiv Math. Phys., 4, 167174.Google Scholar
Schlömilch, O. 1847. Handbuch der Differenzial- und Integralrechnung. Greifswald, Germany: Otte.Google Scholar
Schlömilch, O. 1849. Uebungsaufgaben für Schüler, Lehrsatz von dem Herrn. Prof. Dr. Schlömilch. Archiv Math. Phys., 12, 415.Google Scholar
Schlömilch, O. 1858. Ueber eine Eigenschaft gewisser Reihen. Zeit. Math. Phys., 3, 130132.Google Scholar
Schneider, I. 1968. Der Mathematiker Abraham de Moivre (1667–1754). Archive Hist. Exact Sci, 5, 177317.Google Scholar
Schneider, I. 1983. Potenzsummenformeln im 17. Jahrhundert. Hist. Math., 10, 286296.Google Scholar
Schneider, T. 1934. Transzendenzuntersuchungen periodischer Funktionen: I. Transzendenz von Potenzen; II. Transzendenzeigenschaften elliptischer Funktionen. J. Reine Angew. Math., 172, 6574.Google Scholar
Schoenberg, I.J. 1988. Selected Papers. Boston: Birkhäuser.Google Scholar
Schönemann, T. 1845. Grundzüge einer allgemeinen Theorie der höheren Congruenzen, deren Modul eine reelle Primzahl ist. J. Reine Angew. Math., 31, 269325.Google Scholar
Schur, I. 1917. Ein Beitrag zur additiven Zahlentheorie der Kettenbrüche. S.B. Preuss. Akad. Wiss. Phys.-Math., 302–321.Google Scholar
Schur, I. 1929. Einige Sätze über Primzahlen mit Anwendung auf Irreduzibilitätsfragen. S-B Akad. Wiss. Berlin Phys. Math. Klasse, 125136.Google Scholar
Schwarz, H.A. 1885. Über ein die Flächen kleinsten Flächeninhalts betreffends Problem der Variationsrechnung. Acta Soc. Scient. Fenn., 1 5, 315–362. Reprinted in Schwarz (1972) vol. 1, pp. 223269.Google Scholar
Schwarz, H.A. 1893. Formeln und Lehrsätze zum Gebrauche der elliptischen Funktionen. Berlin: Springer.Google Scholar
Schwarz, H.A. 1972. Abhandlungen. New York: Chelsea.Google Scholar
Schweins, F. 1820. Analysis. Heidelberg: Mohr und Winter.Google Scholar
Schwering, K. 1899. Zur Theorie der Bernoulli’schen Zahlen. Math. Ann., 52, 171173.Google Scholar
Scriba, C.J. 1961. Zur Lösung des 2. Debeauneschen Problems durch Descartes. Archive Hist. Exact Sci., 1, 406419.Google Scholar
Scriba, C.J. 1964. The inverse method of tangents. Archive Hist. Exact Sci., 2, 113137.Google Scholar
Seal, H.L. 1949. The historical development of the use of generating functions in probability theory. Bull. Assoc. Actuaires Suisses, 49, 209228.Google Scholar
Segal, S.L. 1978. Riemann’s example of a continuous “nondifferentiable” function. Math. Intelligencer, 1, 8182.Google Scholar
Seidel, P.L. 1847. Note über eine Eigenschaft der Reihen, welche discontinuirliche Functionen darstellen. Abhand. Math. Phys. Klasse der Kgl. Bayrischen Akad. Wiss., 5, 381394.Google Scholar
Seki, T. 1974. Takakazu Seki’s Collected Works Edited with Explanations. Osaka: Kyoiku Tosho. Edited by A. Hirayama, K. Shimodaira and H. Hirose; translated by Jun Sudo.Google Scholar
Selberg, A. 1941. Über einen Satz von A. Gelfond. Arch. Math. Naturvidenskab, 44, 159–170. Reprinted in Selberg’s Collected Papers vol. 1, pp. 62–73.Google Scholar
Selberg, A. 1944. Bemerkninger om et multipelt integral. Norsk. Mat. Tidskr., 26, 71–78. Republished in Selberg (1989) vol. 1, pp. 204–211.Google Scholar
Selberg, A. 1949. An elementary proof of the prime number theorem. Ann. of Math., 50, 305313.Google Scholar
Selberg, A. 1989. Collected Papers. New York: Springer-Verlag.Google Scholar
Sen Gupta, D.P. 2000. Sir Asutosh Mookerjee—educationist, leader and institution-builder. Current Sci., 78, 15661573.Google Scholar
Serret, J.A. 1854. Cours d’algèbre supérieure. Paris: Mallet-Bachelier.Google Scholar
Serret, J.A. 1868. Cours de calcul différentiel et intégral. Paris: Gauthier-Villars.Google Scholar
Serret, J.A. 1877. Cours d’algèbre supérieure, 4 é. Paris: Gauthier-Villars.Google Scholar
Shah, S.M. 1948. A note on uniqueness sets for entire functions. Proc. Indian Acad. Sci., Sect. A, 28, 519526.Google Scholar
Shidlovskii, A.B. 1989. Transcendental Numbers. Berlin: de Gruyter. Translated by N. Koblitz.Google Scholar
Shimura, G. 2007. Elementary Dirichlet Series and Modular Forms. New York: Springer.Google Scholar
Shimura, G. 2008. The Map of My Life. New York: Springer.Google Scholar
Siegel, C.L. 1932. Über die Perioden elliptischer Funktionen. J. Reine Angew. Math., 167, 6269.Google Scholar
Siegel, C.L. 1949. Transcendental Numbers. Princeton: Princeton University Press.Google Scholar
Siegel, C.L. 1969. Topics In Complex Function Theory. New York: Wiley.Google Scholar
Simmons, G.F. 1992. Calculus Gems. New York: McGraw-Hill.Google Scholar
Simon, B. 2005. OPUC on One Foot. Bull. A.M.S., 42, 431460.Google Scholar
Simpson, T. 1743. Mathematical Dissertations. London: Woodward.Google Scholar
Simpson, T. 1750. The Doctrine and Application of Fluxions. London: Nourse.Google Scholar
Simpson, T. 1759. The invention of a general method for determining the sum of every second, third, fourth, or fifth, etc. term of a series, taken in order; the sum of the whole being known. Phil. Trans. Roy. Soc., 50, 757769.Google Scholar
Simpson, T. 1800. A Treatise of Algebra. London: Wingrave.Google Scholar
Sluse, R.F. 1672. An extract of a letter … concerning his short and easie method of drawing tangents to all geometical curves. Phil. Trans. Roy. Soc., 7, 51435147.Google Scholar
Smith, D.E. (ed). 1959. A Source Book in Mathematics. New York: Dover.Google Scholar
Smith, D.E., and Mikami, Y. 1914. A History of Japanese Mathematics. Chicago: Open Court.Google Scholar
Smith, H.J.S. 1875. On the Integration of Discontinuous Functions. Proc. London Math. Soc., 6, 140–153. Reprinted in Smith (1965) vol. 2, pp. 86–100.Google Scholar
Smith, H.J.S. 1965a. Collected Mathematical Papers. New York: Chelsea. Edited by J.W.L. Glaisher. Volume 1 includes Smith’s Report on the Theory of Numbers.Google Scholar
Smith, H.J.S. 1965b. Report on the Theory of Numbers. New York: Chelsea.Google Scholar
Snow, J.E. 2003. Views on the real numbers and the continuum. Rev. Mod. Logic, 9, 95113.Google Scholar
Somayaji, Putumana. 2018. Karanapaddhati of Putumana Somayaji. Singapore: Springer Nature. Edited and translated with commentary by V. Pai, K. Ramasubramanian, M.S. Sriram and M.D. Srinivas.Google Scholar
Spence, W. 1809. An Essay on the Theory of the Various Orders of Logarithmic Transcendents. London: Murray.Google Scholar
Spence, W. 1819. Mathematical Essays. London: Whittaker. Edited by J.F.W. Herschel.Google Scholar
Spiess, O. (ed). 1955. Der Briefwechsel von Johann Bernoulli. Basel: Birkhäuser.Google Scholar
Spiridonov, V. 2013. Elliptic hypergeometric functions. Pages 577–606 of: Special Functions, Russian edition. Moscow: Cambridge University Press and MCCME. This article was written in Russian as an additional complementary chapter to the Russian edition of Special Functions, by Andrews, Askey, Roy.Google Scholar
Sridharan, R. 2005. Sanskrit prosody, Pingala sutras and binary arithmetic. Pages 33–62 of: Emch, G.G. et al. (ed), Contributions to the history of Indian mathematics. New Delhi: Hindustan Book Agency and Springer.Google Scholar
Srinivasiengar, C.N. 1967. The History of Ancient Indian Mathematics. Calcutta: World Press.Google Scholar
Stäckel, P. 1908. Eine vergessen Abhandlung Leonhard Eulers über die Summe der reziproken Quadrate der natürlichen Zalen. Biblio. Math., 8, 3760.Google Scholar
Stäckel, P., and Ahrens, W. (eds). 1908. Briefwechsel zwischen C.G.J. Jacobi und P.H. Fuss. Leipzig: Teubner.Google Scholar
Stark, H.M. 1967. A complete determination of the complex quadratic fields with class-number one. Michigan Math. J., 14, 127.Google Scholar
Stark, H.M. 1969. On the ‘gap’ in a theorem of Heegner. J. Number Theory, 1, 1627.Google Scholar
Stedall, J. 2000. Catching proteus: The collaborations of Wallis and Brouncker, I and II. Notes and Records Roy. Soc. London, 54, 293331.Google Scholar
Steele, J.M. 2004. The Cauchy-Schwarz Master Class. Cambridge: Cambridge University Press.Google Scholar
Steffens, K.-G. 2006. The History of Approximation Theory. Boston: Birkhäuser.Google Scholar
Stephens, L., and Lee, S. (eds). 1908. Dictionary of National Biography, 22 volumes. New York: Macmillan.Google Scholar
Stickelberger, L. 1890. Über eine Verallgemeinerung von der Kreistheilung. Math. Ann., 37, 321367.Google Scholar
Stieltjes, T.J. 1885a. Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Math., 6, 321–326. Reprinted in Stieltjes’s 1993 Collected Papers vol. 1, pp. 522–527.Google Scholar
Stieltjes, T.J. 1885b. Sur les polynômes de Jacobi. Comptes Rendus, 100, 620–622. Reprinted in Stieltjes’ Collected Papers vol. 1, pp. 530532.Google Scholar
Stieltjes, T.J. 1886a. Recherches sur quelques séries semi-convergentes. Ann. Sci. École Norm., 3, 201–258. Reprinted in Stieltjes’s Collected Papers vol. 2, pp. 2–58.Google Scholar
Stieltjes, T.J. 1886b. Sur les racines de l’équation Xn = 0. Acta Math., 9, 385–400. Reprinted in Stieltjes’s 1993 Collected Papers vol. 2, pp. 77–92.Google Scholar
Stieltjes, T.J. 1889. Sur le développement de log Γ(a). J. Math. Pures Appl., [ 4 ] 5, 425–444. Reprinted in Stieltjes’s Collected Papers vol. 2, pp. 215234.Google Scholar
Stieltjes, T.J. 1890. Note sur l’intégral ∫0 e u2 due. Nouv. Ann. Math. Paris, 9, 479–480. Reprinted in Stieltjes’s Oeuvres Complètes vol. 2, pp. 263264.Google Scholar
Stieltjes, T.J. 1993. Collected Papers. New York: Springer-Verlag. Edited by G. van Dijk.Google Scholar
Stirling, J. 1717. Lineae Tertii Ordinis Neutonianae. Oxford: Whistler.Google Scholar
Stirling, J. 1719. Methodus differentialis Newtoniana illustrata. Phil. Trans., 30, 10501070.Google Scholar
Stirling, J. 1730. Methodus differentialis. London: Strahan.Google Scholar
Stirling, J., and Tweddle, I. 2003. James Stirling’s Methodus differentialis, An Annotated Translation of Stirling’s Text. London: Springer.Google Scholar
Stokes, G.G. 1849. On the critical values of the sums of periodic series. Trans. Cambridge Phil. Soc., 8, 533583.Google Scholar
Stone, E. 1730. The Method of Fluxions both Direct and Inverse. London: W. Innys.Google Scholar
Stone, M. 1932. Linear transformations in Hilbert Spaces and their applications to analysis. Providence: A.M.S.Google Scholar
Strichartz, R.S. 1995. The Way of Analysis. London: Jones and Bartlett.Google Scholar
Struik, D.J. 1969. A Source Book in Mathematics. Cambridge, MA: Harvard University Press.Google Scholar
Struik, D.J. 1987. A Concise History of Mathematics. New York: Dover.Google Scholar
Stubhaug, A. 2000. Niels Henrik Abel and His Times. New York: Springer.Google Scholar
Sturm, C. 1829. Analyse d’un mémoire sur la résolution des équations numériques. Bull. Sci. Férussac, 11, 419.Google Scholar
Sturmfels, B. 2008. Algorithms on Invariant Theory. Wien: Springer.Google Scholar
Sylvester, J.J. 1852. On the principles of the calculus of forms. Cambridge and Dublin Math. J., 7, 52–97, 179–217. Reprinted in Sylvester (1973) vol. 1, pp. 284–327, 328–363.Google Scholar
Sylvester, J.J. 1853a. On a theory of the syzygetic relations of two rational integral functionsPhil. Trans., 143, 407–548. Reprinted in Sylvester (1973) vol. 1, pp. 429586.Google Scholar
Sylvester, J.J. 1853b. On Mr. Cayley’s impromptu demonstration of the rule for determining at sight the degreePhil. Mag., 5, 199–202. Reprinted in Sylvester (1973) vol. 1, pp. 595–598.Google Scholar
Sylvester, J.J. 1865. On an elementary proof and generalization of Sir Isaac Newton’s hitherto undemonstrated rule for the discovery of imaginary roots. Proc. London Math. Soc., 1, 1–16. Reprinted in Sylvester’s Collected Mathematical Papers (1773) vol. 2, pp. 498–513.Google Scholar
Sylvester, J.J. 1869. On a new continued fraction applicable to the quadrature of the circle. Phil. Magazine, 37, 373–375. Republished in Sylvester’s Collected Mathematical Papers vol. 2, pp. 691–693.Google Scholar
Sylvester, J.J. 1878. Proof of the hitherto undemonstrated theorem of invariants. Phil. Mag., 5, 178–188. Reprinted in Sylvester (1973) vol. 3, pp. 117126.Google Scholar
Sylvester, J.J. 1882. A constructive theory of partitions, arranged in three acts, an interact, and an exodion. Amer. J. Math, 5, 251–330. Reprinted in Sylvester (1973) vol. 4, pp. 1–83.Google Scholar
Sylvester, J.J. 1973. Mathematical Papers. New York: Chelsea. Edited by H. Baker.Google Scholar
Szegő, G. 1926. Ein Beitrag zur Theorie der Thetafunktionen. S.B. Preuss. Akad. Wiss. Phys-Math., 242–252. Reprinted in Szegő (1982) vol. 1, pp. 795805.Google Scholar
Szegő, G. 1975. Orthogonal Polynomials. Providence: A.M.S.Google Scholar
Szegő, G. 1982. The Collected Papers of Gabor Szegő. Boston: Birkhäuser. Edited by R. Askey.Google Scholar
Szekeres, G. 1968. A combinatorial interpretation of Ramanujan’s continued fraction. Canadian Math. Bull., 11, 405408.Google Scholar
Takagi, T. 1990. Collected Papers. Tokyo: Springer-Verlag. Edited by S. Iyanaga, K. Iwasawa, K. Kodaira, and K. Yosida.Google Scholar
Takase, M. 1994. Three aspects of the theory of complex multiplication. Pages 91–108 of: Sasaki, C., Sugiura, M., and Dauben, J.W. (eds), The Intersection of History and Mathematics. Basel: Birkhäuser.Google Scholar
Tannery, J., and Molk, J. 1972. Éléments de la théorie des fonctions elliptiques, 4 vols. New York: Chelsea.Google Scholar
Tauber, A. 1897. Ein Satz aus der Theorie der unendlichen Reihen. Monats. Math. und Phys., 8, 273277.Google Scholar
Taylor, B. 1715. Methodus incrementorum directa et inversa. London: W. Innys.Google Scholar
Taylor, B., and Feigenbaum, L. 1981. Brook Taylor’s “Methodus incrementorum”: A Translation with Mathematical and Historical Commentary. Ph.D. thesis, Yale University.Google Scholar
Thomae, J. 1869. Beiträge zur Theorie der durch die Heinsche ReiheJ. Reine Angew. Math., 70, 258281.Google Scholar
Thomson, W., and Tait, P.G. 1890. Treatise on Natural Philosophy. Cambridge: Cambridge University Press.Google Scholar
Tignol, J.-P. 1988. Galois’ Theory of Algebraic Equations. New York: Wiley.Google Scholar
Titchmarsh, E.C., and Heath-Brown, D.R. 1986. The Theory of the Riemann-Zeta Function. Oxford: Oxford University Press.Google Scholar
Truesdell, C. 1960. The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. Introduction to Vols. 10 and 11, Second Series of Euler’s Opera omnia. Zurich: Orell Füssli Turici.Google Scholar
Truesdell, C. 1984. An Idiot’s Fugitive Essays on Science. New York: Springer-Verlag.Google Scholar
Tucciarone, J. 1973. The development of the theory of summable divergent series from 1880 to 1925. Archive Hist. Exact Sci., 10, 140.Google Scholar
Turán, P. 1990. Collected Papers. Budapest: Akadémiai Kiadó. Edited by P. Erdős.Google Scholar
Turnbull, H.W. 1933. James Gregory: A study in the early history of interpolation. Proc. Edinburgh Math. Soc., 3, 151172.Google Scholar
Turnbull, H.W. (ed). 1939. James Gregory Tercentenary Memorial Volume. London: Bell.Google Scholar
Tweddle, I. 1984. Approximating n! Historical origins and error analysis. Amer. J. Phys., 52, 487488.Google Scholar
Tweddle, I. 1988. James Stirling: “This about series and such things. Edinburgh: Scottish Acad. Press.Google Scholar
Tweedie, C. 1917–1918. Nicole’s contributions to the foundations of the calculus of finite differences. Proc. Edinburgh Math. Soc., 36, 2239.Google Scholar
Tweedie, C. 1922. James Stirling: A Sketch of His Life and Works along with His Scientific Correspondence. Oxford: Oxford University Press.Google Scholar
Valiron, G. 1913. Sur les fonctions entières d’ordre fini et d’ordre nul, et en particulier les fonctions à correspondence régulière. Ann. Fac. Sci. Toulouse, 5, 117257.Google Scholar
Valiron, G. 1949. Lectures on the General Theory of Integral Functions. New York: Chelsea.Google Scholar
Vallée-Poussin, C.J. de la. 1896a. Demonstration simplifée du théorème de Dirichlet sur la progression arithmétique. Mém. Acad. Roy. Soc. Bruxelles, 53, 68.Google Scholar
Vallée-Poussin, C.J. de la. 1896b. Recherches analytiques sur la théorie des nombres premiers, I–III. Ann. Soc. Sci. Bruxelles, 20, 183–256, 281–362, 363–397.Google Scholar
Van Brummelen, G. 2009. The Mathematics of the Heavens and the Earth. Princeton: Princeton University Press.Google Scholar
Van Brummelen, G., and Kinyon, M. (eds). 2005. Mathematics and the Historian’s Craft. New York: Springer.Google Scholar
Van Maanen, J.A. 1984. Hendrick van Heuraet (1634–1660?): His life and work. Centaurus, 27, 218279.Google Scholar
van Rootselaar, B. 1964. Bolzano’s Theory of Real Numbers. Archive Hist. Exact Sci., 2, 168180.Google Scholar
Vandermonde, T.A. 1772. Mémoire sur des irrationnelles de différents ordres avec une application au cercle. Hist. Acad. Roy. Sci. Paris pour 1772, 489498.Google Scholar
Varadarajan, V.S. 2006. Euler Through Time. Providence: A.M.S.Google Scholar
Venkatachaliengar, K., and Cooper, S. 2011. Development of Elliptic Functions According to Ramanujan. Singapore: World Scientific.Google Scholar
Viète, F. 1593. Variorum de rebus mathematicis responsorum, Liber. VIII. Turonis: Iamettium Mettayer.Google Scholar
Viète, F. 1983. The Analytic Art. Kent, OH: Kent State University Press. Translated by T.R. Witmer.Google Scholar
Vlǎduţ, S.G. 1991. Kronecker’s Jugendtraum and Modular functions. New York: Gordon and Breach. Translated by M. Tsfasman.Google Scholar
von Kowalevsky, S. (Kovalevskaya). 1875. Zur Theorie der partiellen Differentialgleichungen. J. Reine Angew. Math., 80, 132.Google Scholar
von Staudt, K.G.C. 1840. Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend. J. Reine Angew. Math., 21, 372374.Google Scholar
Vorselman de Heer, P. 1833. Specimen inaugurale de fractionibus continuis. PhD thesis, Utrecht.Google Scholar
Wagstaff, S. S. 1981. Ramanujan’s paper on Bernoulli numbers. J. Indian Math. Soc., 45, 4965.Google Scholar
Wali, K.C. 1991. Chandra: A Biography of S. Chandrasekhar. Chicago: University Chicago Press.Google Scholar
Walker, J.J. 1891. On the influence of applied on the progress of pure mathematics. Proc. London Math. Soc., 22, 118.Google Scholar
Wallis, J. 1656. Arithmetica Infinitorum. Oxford: Lichfield.Google Scholar
Wallis, J. 1659. Tractatus duo, prior, de cycloide … Oxford: Lichfield.Google Scholar
Wallis, J. 1668. Logarithmotechnia Nicolai Mercatoris. Phil. Trans., 3, 753759.Google Scholar
Wallis, J. 1685. A Treatise of Algebra both Historical and Practical. London: Oxford UniversityGoogle Scholar
Wallis, J. 1693–1699. Opera Mathematica, 3 vols. Oxford: T. Sheldoniano.Google Scholar
Wallis, J., and Stedall, J. 2004. The Arithmetic of Infinitesimals. New York: Springer. Translation with notes of Wallis’s Arithmetica Infinitorum by J.A. Stedall.Google Scholar
Waring, E. 1779. Problems concerning interpolations. Phil. Trans. Roy. Soc. London, 69, 5967.Google Scholar
Waring, E. 1991. Meditationes Algebraicae. Providence: A.M.S. Translated by D. Weeks.Google Scholar
Watson, G.N. 1933. The marquis and the land-agent. Math. Gazette, 17, 517.Google Scholar
Watson, G.N. 1938. Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math., 179, 97128.Google Scholar
Weber, H. 1895. Lehrbuch der Algebra. Braunschweig: Vieweg.Google Scholar
Weierstrass, K. 1856. Über die Theorie der analytischen Facultäten. J. Reine Angew. Math, 5 1, 1–60. Reprinted in Weierstrass (1894–1927) vol. 1, pp. 153221.Google Scholar
Weierstrass, K. 1885. Zu Lindemann’s Abhandlung “Über die Ludolphsche Zahl.S.B. Preuss. Akad. Wiss., 1067–1085. Reprinted in Weierstrass’s Werke, vol. 2, pp. 341361.Google Scholar
Weierstrass, K. 1894–1927. Mathematische Werke. Berlin: Mayer and Müller.Google Scholar
Weil, A. 1946. Foundations of Algebraic Geometry. Providence: A.M.S.Google Scholar
Weil, A. 1949. Numbers of solutions of equations in finite fields. Bull. A.M.S., 55, 497–508.Google Scholar
Weil, A. 1974. Two lectures on number theory, past and present. Enseign. Math., 20, 87110.Google Scholar
Weil, A. 1976. Elliptic Functions According to Eisenstein and Kronecker. New York: Springer.Google Scholar
Weil, A. 1979. Collected Papers. New York: Springer-Verlag.Google Scholar
Weil, A. 1984. Number Theory: An Approach through History from Hammurapi to Legendre. Boston: Birkhäuser.Google Scholar
Weil, A. 1989a. On Eisenstein’s copy of the Disquisitiones. Adv. Studies Pure Math., 17, 463469.Google Scholar
Weil, A. 1989b. Prehistory of the zeta function. Pages 1–9 of: Aubert, K.E., Bombieri, E., and Goldfeld, D. (eds), Number Theory, Trace Formulas, and Discrete Groups. Boston: Academic Press.Google Scholar
Weil, A. 1992. The Apprenticeship of a Mathematician. Boston: Birkhäuser.Google Scholar
Westfall, R. 1980. Never at Rest. Cambridge: Cambridge University Press.Google Scholar
Whiteside, D.T. 1961a. Henry Briggs: The binomial theorem anticipated. Math. Gazette, 45, 912.Google Scholar
Whiteside, D.T. 1961b. Patterns of mathematical thought in the later seventeenth century. Archive Hist. Exact Sci., 1, 179388.Google Scholar
Whittaker, E.T., and Robinson, G. 1949. The Calculus of Observations. London: Blackie and Son.Google Scholar
Whittaker, E.T., and Watson, G.N. 1927. A Course of Modern Analysis. Cambridge: Cambridge University Press.Google Scholar
Wiener, N. 1958. The Fourier Integral and Certain of Its Applications. New York: Dover.Google Scholar
Wiener, N. 1979. Collected Works. Cambridge, MA: MIT Press. Edited by P. Masani.Google Scholar
Wilbraham, H. 1848. On a certain periodic function. Cambridge and Dublin Math. J., 3, 198201.Google Scholar
Wilf, H.S. 2001. The number-theoretic content of the Jacobi triple product identity. Pages 227– 230 of: Foata, D., and Han, G.-N. (eds), The Andrews Festschrift: Seventeen Papers on Classical Number Theory and Combinatorics. New York: Springer.Google Scholar
Wilson, K. 1962. Proof of a conjecture of Dyson. J. Math. Physics, 3, 10401043.Google Scholar
Wintner, A. 1929. Spektral Theorie der unendlichen Matrizen. Leipzig: Hirzel.Google Scholar
Woodhouse, R. 1803. The Principles of Analytical Calculation. Cambridge: Cambridge University Press.Google Scholar
Yadegari, M. 1980. The binomial theorem: A widespread concept in medieval Islamic mathematics. Hist. Math., 7, 401406.Google Scholar
Yandell, B.H. 2002. The Honors Class. Natick, MA: Peters.Google Scholar
Young, G.C., and Young, W.H. 1909. On derivatives and the theorem of the mean. Quart. J. Pure Appl. Math., 40, 126.Google Scholar
Young, G.C., and Young, W.H. 2000. Selected Papers. Lausanne, Switzerland: Presses Polytechniques. Edited by S.D. Chatterji and H. Wefelscheid.Google Scholar
Young, W.H. 1909. A note on a trigonometrical series. Messenger Math., 38, 4448.Google Scholar
Yushkevich, A.P. 1964. Geschichte der Mathematik in Mittelalter. Leipzig: Teubner.Google Scholar
Yushkevich, A.P. 1971. The concept of function up to the middle of the 19th century. Archive Hist. Exact Sci., 16, 3785.Google Scholar
Zdravkovska, S., and Duren, P. 1993. Golden Years of Moscow Mathematics. Providence: A.M.S.Google Scholar
Zolotarev, E. 1876. Sur la série de Lagrange. Nouvelles Ann. Math., 15, 422423.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Series and Products in the Development of Mathematics
  • Online publication: 12 March 2021
  • Chapter DOI: https://doi.org/10.1017/9781108709453.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Series and Products in the Development of Mathematics
  • Online publication: 12 March 2021
  • Chapter DOI: https://doi.org/10.1017/9781108709453.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Series and Products in the Development of Mathematics
  • Online publication: 12 March 2021
  • Chapter DOI: https://doi.org/10.1017/9781108709453.026
Available formats
×