Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T12:09:48.587Z Has data issue: false hasContentIssue false

6 - Transcranial magnetic stimulation investigations of reaching and grasping movements

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Transcranial magnetic stimulation (TMS) has emerged as a suitable technique to investigate the network of cortical areas involved in human grasp/reach movements. Applied over the primary motor cortex (M1), TMS reveals the pattern of activation of different muscles during complex reaching-to-grasp tasks. Repetitive TMS (rTMS) used to induce “virtual lesions” of other cortical areas has allowed investigation of other cortical structures such as the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and the anterior intraparietal sulcus (aIPS). Each of these appears to contribute to specific aspects of reaching, grasping and lifting objects. Finally, twin-coil TMS studies can illustrate the time course of operation of parallel intracortical circuits that mediate functional connectivity between the PMd, PMv, the posterior parietal cortex and the primary motor cortices.

Introduction

The ease with which we can make reach-to-grasp movements conceals a good deal of the underlying complexity of the task. Thus, the target of the reach must be located in space; a decision must be made about the most appropriate type and orientation of grasp according to the weight and shape of the object; and the timing of the reaching movement of the arm must be synchronized with the opening of the hand so that the object can be grasped as effectively and quickly as possible (for a review see Castiello, 2005; see also Chapters 2 and 10).

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 72 - 83
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumer, T., Bock, F., Koch, G.et al. (2006). Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. J Physiol (Lond), 572, 857–868.CrossRefGoogle ScholarPubMed
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C. & Frahm, J. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci, 19, 1950–1962.CrossRefGoogle ScholarPubMed
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C. & Frahm, J. (2005). BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage, 28, 22–29.CrossRefGoogle ScholarPubMed
Binkofski, F., Dohle, C., Posse, S.et al. (1998). Human anterior intraparietal area subserves prehension. Neurology, 50, 1253–1259.CrossRefGoogle ScholarPubMed
Binkofski, F., Buccino, G., Posse, S.et al. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci, 11, 3276–3286.CrossRefGoogle ScholarPubMed
Castiello, U. (2005). The neuroscience of grasping. Nat Rev Neurosci, 6, 726–736.CrossRefGoogle ScholarPubMed
Cattaneo, L., Voss, M., Brochier, T.et al. (2005). A cortico-cortical mechanism mediating object-driven grasp in humans. Proc Natl Acad Sci USA, 102, 898–903.CrossRefGoogle ScholarPubMed
Chen, R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res, 154, 1–10.CrossRefGoogle ScholarPubMed
Chen, R., Yung, D. & Li, J. Y. (2003). Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol, 89, 1256–1264.CrossRefGoogle ScholarPubMed
Civardi, C., Cantello, R., Asselman, P. & Rothwell, J. C. (2001). Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage, 14, 1444–1453.CrossRefGoogle ScholarPubMed
Chouinard, P. A., Leonard, G. & Paus, T. (2005). Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. J Neurosci, 25, 2277–2284.CrossRefGoogle ScholarPubMed
Culham, J. C.et al. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res, 153, 180–189.CrossRefGoogle Scholar
Davare, M., Andres, M., Cosnard, G., Thonnard, J. L. & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci, 26, 2260–2268.CrossRefGoogle ScholarPubMed
Davare, M., Andres, M., Clerget, E., Thonnard, J. L. & Olivier, E. (2007). Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci, 27, 3974–3980.CrossRefGoogle ScholarPubMed
Desmurget, M., Epstein, C. M., Turner, R. S.et al. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci, 2, 563–567.CrossRefGoogle ScholarPubMed
Ehrsson, H. H., Fagergren, A., Jonsson, T.et al. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol, 83, 528–553.CrossRefGoogle Scholar
Ehrsson, H. H., Fagergren, E. & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol, 85, 2613–2623.CrossRefGoogle Scholar
Ferbert, A., Priori, A., Rothwell, J. C.et al. (1992). Interhemispheric inhibition of the human motor cortex. J Physiol (Lond), 453, 525–546.CrossRefGoogle ScholarPubMed
Glover, S., Miall, R. C. & Rushworth, M. F. S. (2005). Parietal rTMS selectively disrupts the initiation of on-line adjustments to a perturbation of object size. J Cogn Neurosci, 17, 124–136.CrossRefGoogle Scholar
Jeannerod, M., Arbib, A., Rizzolatti, G. & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci, 18, 314–320.CrossRefGoogle ScholarPubMed
Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D.et al. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA, 99, 14518–14523.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res, 71, 59–71.CrossRefGoogle ScholarPubMed
Kuhtz-Buschbeck, J. P., Ehrsson, H. H. & Forssberg, H. (2001). Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci, 14, 382–390.CrossRefGoogle Scholar
Koch, G., Franca, M., Fernandez Del Olmo, M.et al. (2006). Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci, 26, 7452–7459.CrossRefGoogle ScholarPubMed
Koch, G., Franca, M., Mochizuki, H.et al. (2007a). Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol, 578, 551–562.CrossRefGoogle ScholarPubMed
Koch, G., Fernandez Del Olmo, M., Cheeran, B.et al. (2007b). Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci, 27, 6815–6822.CrossRefGoogle ScholarPubMed
Koch, G., Fernandez Del Olmo, M., Cheeran, B.et al. (2008). Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci, 28, 5944–5953.CrossRefGoogle ScholarPubMed
Lee, L., Siebner, H. R., Rowe, J. B.et al. (2003). Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci, 23, 5308–5318.CrossRefGoogle ScholarPubMed
Lemon, R. N., Johansson, R. S. & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. J Neurosci, 15, 6145–6156.CrossRefGoogle ScholarPubMed
Lemon, R. N., Johansson, R. S. & Westling, G. (1996). Modulation of corticospinal influence over hand muscles during gripping tasks in man and monkey. Can J Physiol Pharmacol, 74, 547–558.CrossRefGoogle ScholarPubMed
Mochizuki, H., Huang, Y. Z. & Rothwell, J. C. (2004). Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. J Physiol, 561, 331–338.CrossRefGoogle ScholarPubMed
Nowak, D. A., Voss, M., Huang, Y. Z., Wolpert, D. M. & Rothwell, J. C. (2005). High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. Eur J Neurosci, 22, 2392–2396.CrossRefGoogle ScholarPubMed
Paus, T., Jech, R., Thompson, C. J.et al. (1997). Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci, 17, 3178–3184.CrossRefGoogle ScholarPubMed
Prabhu, G., Voss, M., Brochier, T.et al. (2007). Excitability of human motor cortex inputs prior to grasp. J Physiol, 581, 189–201.CrossRefGoogle Scholar
Rice, N. J., Tunik, E. & Grafton, S. T. (2006). The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci, 26, 8176–8182.CrossRefGoogle ScholarPubMed
Rushworth, M. F., Johansen-Berg, H., Gobel, S. M. & Devlin, J. T. (2003). The left parietal and premotor cortices: motor attention and selection. Neuroimage, 20, S89–S100.CrossRefGoogle Scholar
Schabrun, S. M., Ridding, M. C. & Miles, T. S. (2008). Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study. Eur J Neurosi, 27, 750–756.CrossRefGoogle ScholarPubMed
Schluter, N. D., Rushworth, M. F., Passingham, R. E. & Mills, K. R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain, 121, 785–799.CrossRefGoogle ScholarPubMed
Schluter, N. D., Krams, M., Rushworth, M. F. & Passingham, R. E. (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia, 39, 105–113.CrossRefGoogle ScholarPubMed
Strafella, A. P., Paus, T., Fraraccio, M. & Dagher, A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain, 126, 2609–2615.CrossRefGoogle ScholarPubMed
Tunik, E., Frey, S. H. & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci, 8, 505–511.CrossRefGoogle ScholarPubMed
Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. (1995). Magnetic stimulation over the cerebellum in humans. Ann Neurol, 37, 703–713.CrossRefGoogle ScholarPubMed
Walsh, V. & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci, 1, 73–79.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Curr Biol, 11, R729–R732.CrossRefGoogle ScholarPubMed
Ziemann, U. & Rothwell, J. C. (2000). I-waves in motor cortex. J Clin Neurophysiol, 17, 397–405.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×