Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T12:14:50.354Z Has data issue: false hasContentIssue false

4 - Recordings from the motor cortex during skilled grasping

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

This chapter offers an overview of the most recent techniques for recording of cortical activity in the awake, behaving monkey. We review the different types of signals that can be extracted from extracellular cortical recordings made with microelectrodes. We also discuss how these signals can be related to dexterous hand movements. This leads us to consider the functional organization of the motor cortex for the control of the distal muscles during grasp.

Introduction

The unique ability of human and non-human primates to interact with their environment is dependent upon the skilled use of the hands for grasping and manipulation of objects. The grasping of objects requires continuous interaction between the sensory processing of the object's physical properties and the motor mechanisms controlling the shape of the hand and the positioning of the hand and digits upon the object. Over the past 30 years, intracortical extracellular recording techniques in the awake monkey have been an essential tool to investigate the organization of the cortical circuits involved in the control of grasp. It has been shown that multiple areas in the parietal and frontal lobes contribute to the transformation from sensory inputs to motor outputs for efficient grasp. This cortical network influences the spinal circuitry that controls the distal hand and digit muscles. Part of this corticospinal control is mediated by direct cortico-motoneuronal (CM) projections from the primary motor cortex (M1) onto motoneurons innervating hand muscles.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 52 - 60
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asher, I., Stark, E., Abeles, M. & Prut, Y. (2007). Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension. J Neurophysiol, 97, 3684–3695.CrossRefGoogle ScholarPubMed
Baker, S. N., Olivier, E. & Lemon, R. N. (1997). Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol, 501, 225–241.CrossRefGoogle ScholarPubMed
Baker, S. N., Philbin, N., Spinks, R.et al. (1999a). Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods, 94, 5–17.CrossRefGoogle ScholarPubMed
Baker, S. N., Kilner, J. M., Pinches, E. M. & Lemon, R. N. (1999b). The role of synchrony and oscillation in the motor output. Exp Brain Res, 128, 109–117.CrossRefGoogle Scholar
Baker, S. N., Spinks, R., Jackson, A. & Lemon, R. N. (2001). Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. J Neurophysiol, 85, 869–85.CrossRefGoogle ScholarPubMed
Bennett, K. M. & Lemon, R. N. (1994). The influence of single monkey cortico-motoneuronal cells at different levels of activity in target muscles. J Physiol, 477, 291–307.CrossRefGoogle ScholarPubMed
Berggren, M., Nilsson, D. & Robinson, N. D. (2007). Organic materials for printed electronics. Nat Mater, 6, 3–5.CrossRefGoogle ScholarPubMed
Boudreau, M. J., Brochier, T., Paré, M. & Smith, A. M. (2001). Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task. J Neurophysiol, 86, 1067–78.CrossRefGoogle Scholar
Brochier, T. & Umiltà, M. A. (2007). Cortical control of grasp in non-human primates. Curr Opin Neurobiol, 17, 637–643.CrossRefGoogle ScholarPubMed
Buys, E. J., Lemon, R. N., Mantel, G. W. & Muir, R. B. (1986). Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J Physiol, 381, 529–49.CrossRefGoogle ScholarPubMed
Cadoret, G. & Smith, A. M. (1997). Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol, 77, 153–66.CrossRefGoogle ScholarPubMed
Gardner, E. P., Ro, J. Y., Babu, K. S. & Ghosh, S. (2007a). Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices. J Neurophysiol, 97, 1656–70.CrossRefGoogle ScholarPubMed
Gardner, E. P., Babu, K. S., Reitzen, S. D.et al. (2007b). Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J Neurophysiol, 97, 387–406.CrossRefGoogle ScholarPubMed
Hepp-Reymond, M. C., Hüsler, E. J., Maier, M. A. & Ql, H. X. (1994). Force-related neuronal activity in two regions of the primate ventral premotor cortex. Can J Physiol Pharmacol, 72, 571–579.CrossRefGoogle ScholarPubMed
Jackson, A. & Fetz, E. E. (2007). Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol, 98, 3109–3118.CrossRefGoogle ScholarPubMed
Jackson, A., Spinks, R. L., Freeman, T. C. B., Wolpert, D. M. & Lemon, R. N. (2002). Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. J Physiol, 541, 685–699.CrossRefGoogle ScholarPubMed
Jackson, A., Gee, V. J., Baker, S. N. & Lemon, R. N. (2003). Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron, 38, 115–125.CrossRefGoogle ScholarPubMed
Jackson, A., Moritz, C. T., Mavoori, J., Lucas, T. H. & Fetz, E. E. (2006). The Neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng, 14, 187–190.CrossRefGoogle ScholarPubMed
Kilner, J. M., Alonso-Alonso, M., Fisher, R. & Lemon, R. N. (2002). Modulation of synchrony between single motor units during precision grip tasks in humans. J Physiol, 541, 937–948.CrossRefGoogle ScholarPubMed
Lemon, R. N. (1984). Methods for neuronal recording in conscious animals. In IBRO Handbook Series: Methods in Neurosciences. Chichester, UK: John Wiley.Google Scholar
Lemon, R. N., Mantel, G. W. & Muir, R. B. (1986). Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J Physiol, 381, 497–527.CrossRefGoogle ScholarPubMed
Maier, M. A., Bennett, K. M., Hepp-Reymond, M. C. & Lemon, R. N. (1993). Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. J Neurophysiol, 69, 772–785.CrossRefGoogle ScholarPubMed
McKiernan, B. J., Marcario, J. K., Karrer, J. H. & Cheney, P. D. (2000). Correlations between corticomotoneuronal (CM) cell postspike effects and cell-target muscle covariation. J Neurophysiol, 83, 99–115.CrossRefGoogle ScholarPubMed
Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev, 65, 37–100.CrossRefGoogle ScholarPubMed
Muir, R. B. & Lemon, R. N. (1983). Corticospinal neurons with a special role in precision grip. Brain Res, 261, 312–316.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L.et al. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol, 78, 2226–2230.CrossRefGoogle ScholarPubMed
Murthy, V. N. & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol, 76, 3949–3967.CrossRefGoogle Scholar
Nicolelis, M. A., Dimitrov, D., Carmena, J. M.et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA, 100, 11041–11046.CrossRefGoogle ScholarPubMed
Raos, V., Umiltá, M. A., Gallese, V. & Fogassi, L. (2004). Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. J Neurophysiol, 92, 1990–2002.CrossRefGoogle ScholarPubMed
Raos, V., Umiltá, M. A., Murata, A., Fogassi, L. & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol, 95, 709–729.CrossRefGoogle ScholarPubMed
Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science, 278, 1950–1953.CrossRefGoogle ScholarPubMed
Riehle, A., Grammont, F., Diesmann, M. & Grün, S. (2000). Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol Paris, 94, 569–582.CrossRefGoogle ScholarPubMed
Salimi, I., Brochier, T. & Smith, A. M. (1999). Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. J Neurophysiol, 81, 825–834.CrossRefGoogle Scholar
Smith, A. M., Hepp-Reymond, M. C. & Wyss, U. R. (1975). Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Exp Brain Res, 23, 315–332.CrossRefGoogle ScholarPubMed
Spinks, R. L., Baker, S. N., Jackson, A., Khaw, P. T. & Lemon, R. N. (2003). The problem of dural scarring in recording from awake behaving monkeys: a solution using 5-flurouracil. J Neurophysiol, 90, 1324–1332.CrossRefGoogle Scholar
Spinks, R. L., Kraskov, A., Brochier, T., Umilta, M. A. & Lemon, R. N. (2008). Selectivity for grasp in local field potential and single neuron activity recorded simultaneously from M1 and F5 in the awake macaque monkey. J. Neurosci, 28, 10961–10971.CrossRefGoogle ScholarPubMed
Stark, E. & Abeles, M. (2007). Predicting movement from multiunit activity. J Neurosci, 27, 8387–8394.CrossRefGoogle ScholarPubMed
Truccolo, W., Friehs, G. M., Donoghue, J. P. & Hochberg, L. R. (2008). Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci, 28, 1163–1178.CrossRefGoogle ScholarPubMed
Umiltà, M. A., Brochier, T., Spinks, R. L. & Lemon, R. N. (2007). Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. J Neurophysiol, 98, 488–501.CrossRefGoogle ScholarPubMed
Vaadia, E., Haalman, I., Abeles, M.et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373, 515–518.CrossRefGoogle ScholarPubMed
Wannier, T. M., Maier, M. A. & Hepp-Reymond, M. C. (1991). Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip. J Neurophysiol, 65, 572–589.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×