Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Methodology
- 1 Analysis of grip forces during object manipulation
- 2 Kinematic assessment of grasping
- 3 Digit forces in multi-digit grasps
- 4 Recordings from the motor cortex during skilled grasping
- 5 Recording of electromyogram activity in the monkey during skilled grasping
- 6 Transcranial magnetic stimulation investigations of reaching and grasping movements
- 7 Neuroimaging of grasping
- 8 Functional magnetic resonance imaging studies of the basal ganglia and precision grip
- 9 Models for the control of grasping
- Part II The physiology of grasping
- Part III The pathophysiology of grasping
- Part IV Therapy of impaired grasping
- Index
- Plate section
- References
9 - Models for the control of grasping
Published online by Cambridge University Press: 23 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Methodology
- 1 Analysis of grip forces during object manipulation
- 2 Kinematic assessment of grasping
- 3 Digit forces in multi-digit grasps
- 4 Recordings from the motor cortex during skilled grasping
- 5 Recording of electromyogram activity in the monkey during skilled grasping
- 6 Transcranial magnetic stimulation investigations of reaching and grasping movements
- 7 Neuroimaging of grasping
- 8 Functional magnetic resonance imaging studies of the basal ganglia and precision grip
- 9 Models for the control of grasping
- Part II The physiology of grasping
- Part III The pathophysiology of grasping
- Part IV Therapy of impaired grasping
- Index
- Plate section
- References
Summary
Summary
This chapter underlines the multifaceted nature of reach and grasp behavior by reviewing several computational models that focus on selected features of reach-to-grasp movements. An abstract meta-model is proposed that subsumes previous modeling efforts, and points towards the need to develop computational models that embrace all the facets of reaching and grasping behavior.
Introduction
Hand transport and hand (pre)shaping are basic components of primate grasping. The different views on their dependence and coordination lead to different explanations of human control of grasping. One can view these two components as being controlled independently but coordinated so as to achieve a secure grasp. The alternative view is that the hand and the arm are taken as a single limb and controlled using a single control mechanism. Needless to say, this distinction is not very sharp; but it becomes a choice to be made by a control engineer when it is necessary to actually implement a grasp controller. The experimental findings so far point towards the view that human grasping involves independent but coordinated control of the arm and the hand (see Jeannerod et al., 1998) (see also Chapter 10). However, reports against this view do exist as it has been suggested that human grasping is a generalized reaching movement that involves movement of digits so as to bring the fingers to their targets on the object surface (Smeets & Brenner, 1999, 2001). Although theoretically both control mechanisms are viable, from a computational viewpoint, the former is more likely.
- Type
- Chapter
- Information
- Sensorimotor Control of GraspingPhysiology and Pathophysiology, pp. 110 - 124Publisher: Cambridge University PressPrint publication year: 2009