Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T02:21:42.473Z Has data issue: false hasContentIssue false

31 - Intensive training of upper extremity function in children with cerebral palsy

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Cerebral palsy (CP) is the most common cause of severe physical disability in childhood. Spastic hemiplegia, characterized by motor impairments largely affecting one side of the body, is the most common form of CP. The resulting impaired hand function is one of the most disabling symptoms of hemiplegia, affecting self-care activities such as feeding, dressing and grooming. Consequently, children with hemiplegic CP tend not to use the more affected extremity. This “developmental non-use” can lead to further deficits, most notably affecting bimanual coordination. To date, there is unfortunately little evidence of efficacy of any specific treatment approach. Nevertheless, several lines of evidence suggest the impairments are not static. Upper extremity performance in children with CP may improve with practice and development, indicating that hand function may well be amenable to treatment. In this chapter we review this evidence along with studies involving intensive unilateral practice; i.e. constraint-induced movement therapy (CIMT). We then discuss important limitations of CIMT (most importantly, bimanual impairments underlie functional limitations) and introduce a new form of intensive training to address these limitations: Hand–Arm Bimanual Intensive Training (HABIT). The clinical implications of these findings and future directions for pediatric rehabilitation research are discussed.

Introduction

Cerebral palsy (CP) is a development disorder of movement and posture causing limitations in activity and deficits in motor skill (Bax et al., 2005) and is attributed to non-progressive disturbances in the developing fetal or infant brain.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 438 - 457
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahl, L. E., Johansson, E., Granat, T. & Carlberg, E. B. (2005). Functional therapy for children with cerebral palsy: an ecological approach. Dev Med Child Neurol, 47, 613–619.CrossRefGoogle Scholar
Bax, M., Goldstein, M., Rosenbaum, P.et al. (2005). Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol, 47, 571–576.CrossRefGoogle ScholarPubMed
Bonaiuti, D., Rebasti, L. & Sioli, P. (2007). The constraint induced movement therapy: a systematic review of randomised controlled trials on the adult stroke patients. Eura Medicophys, 43, 139–146.Google ScholarPubMed
Bonnier, B., Eliasson, A. C. & Krumlinde-Sundholm, L. (2006). Effects of constraint-induced movement therapy in adolescents with hemiplegic cerebral palsy: a day camp model. Scand J Occup Ther, 13, 13–22.CrossRefGoogle ScholarPubMed
Bouza, H., Dubowitz, L., Rutherford, M. & Pennock, J. M. (1994). Prediction of outcome in children with congenital hemiplegia: a magnetic resonance imaging study. Neuropediatrics (Stuttgart), 25, 60–66.CrossRefGoogle ScholarPubMed
Bower, E., Michell, D., Burnett, M., Campbell, M. J. & Mclellan, D. L. (2001). Randomized controlled trial of physiotherapy in 56 children with cerebral palsy followed for 18 months. Dev Med Child Neurol, 43, 4–15.CrossRefGoogle ScholarPubMed
Boyd, R. N., Morris, M. E. & Graham, H. K. (2001). Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur J Neurol, 8 Suppl 5, 150–166.CrossRefGoogle ScholarPubMed
Brown, J. K., Rensburg, E., Walsh, G., Lakie, M. & Wright, G. W. (1987). A neurological study of hand function of hemiplegic children. Dev Med Child Neurol (Lond), 29, 287–304.CrossRefGoogle ScholarPubMed
Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain, 116, 1223–1247.CrossRefGoogle ScholarPubMed
Cauraugh, J. H. & Summers, J. J. (2005). Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol, 75, 309–320.CrossRefGoogle ScholarPubMed
Charles, J. & Gordon, A. M. (2005). A critical review of constraint-induced movement therapy and forced-use in children with hemiplegia. Neural Plasticity, 12, 245–262.CrossRefGoogle ScholarPubMed
Charles, J. & Gordon, A. M. (2006). Development of hand–arm bimanual intensive therapy (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 48, 931–936.CrossRefGoogle ScholarPubMed
Charles, J. & Gordon, A. M. (2007). A repeated course of constraint-induced movement therapy results in further improvement. Dev Med Child Neurol, 49, 770–773.CrossRefGoogle ScholarPubMed
Charles, J., Lavinder, G. & Gordon, A. M. (2001). The effects of constraint induced therapy on hand function in children with hemiplegic cerebral palsy. Ped Phys Ther, 13, 68–76.Google ScholarPubMed
Charles, J. R., Wolf, S. L., Schneider, J. A. & Gordon, A. M. (2006). Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol, 48, 635–642.CrossRefGoogle ScholarPubMed
Cioni, G., Sales, B., Paolicelli, P. B.et al. (1999). MRI and clinical characteristics of children with hemiplegic cerebral palsy. Neuropediatrics, 30, 249–255.CrossRefGoogle ScholarPubMed
Dromerick, A. W., Lum, P. S. & Hidler, J. (2006). Activity-based therapies. NeuroRx, 3, 428–438.CrossRefGoogle ScholarPubMed
Duff, S. V. & Gordon, A. M. (2003). Learning of grasp control in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 45, 746–757.CrossRefGoogle ScholarPubMed
Duque, J., Thonnard, J. L., Vandermeeren, Y.et al. (2003). Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia. Brain (London)732–747.CrossRefGoogle ScholarPubMed
Eliasson, A. C. & Gordon, A. M. (2000). Impaired force coordination during object release in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 42, 228–234.CrossRefGoogle ScholarPubMed
Eliasson, A. C. & Gordon, A. M. (2008). Constraint-induced movement therapy for children with hemiplegia. In Eliasson, A. C. & Burtner, P. (Eds.), Child with Cerebral Palsy: Management of the Upper Extremity. Clinics in Developmental Medicine (pp. 308–319). London: MacKeith Press.Google Scholar
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1991). Basic coordination of manipulative forces in children with cerebral palsy. Dev Med Child Neurol (Lond), 33, 659–658.Google ScholarPubMed
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1992). Impaired anticipatory control of isometric forces during grasping by children with cerebral palsy. Dev Med Child Neurol (Lond), 34, 216–225.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1995). Tactile control of isometric fingertip forces during grasping in children with cerebral palsy. Dev Med Child Neurol (Lond), 37, 72–84.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Bonnier, B. & Krumlinde-Sundholm, L. (2003). Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy – a day camp model. Dev Med Child Neurol, 45, 357–359.CrossRefGoogle Scholar
Eliasson, A. C., Krumlinde-Sundholm, L., Shaw, K. & Wang, C. (2005). Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol, 47, 266–275.CrossRefGoogle Scholar
Eliasson, A. C., Forssberg, H., Hung, Y. C. & Gordon, A. M. (2006). Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study. Pediatrics, 118, e1226–e1236.CrossRefGoogle ScholarPubMed
Eyre, J. A. (2003). Development and plasticity of the corticospinal system in man. Neural Plasticity, 10, 93–106.CrossRefGoogle ScholarPubMed
Eyre, J. A., Taylor, J. P., Villagra, F., Smith, M. & Miller, S. (2001). Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology, 57, 1543–1554.CrossRefGoogle ScholarPubMed
Eyre, J. A., Smith, M., Dabydeen, L.et al. (2007). Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann Neurol, 493–503.CrossRefGoogle ScholarPubMed
Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Exp Brain Res, 85, 451–457.CrossRefGoogle Scholar
Forssberg, H., Eliasson, A. C., Redon-Zouitenn, C., Mercuri, E. & Dubowitz, L. (1999). Impaired grip-lift synergy in children with unilateral brain lesions. Brain (Lond), 122, 1157–1168.CrossRefGoogle ScholarPubMed
Friel, K. M. & Martin, J. H. (2007). Bilateral activity-dependent interactions in the developing corticospinal system. J Neurosci, 27, 11083–11090.CrossRefGoogle ScholarPubMed
Gordon, A. M. (2000). The development of hand motor control. In Kalverboer, A. F. & Gramsbergen, A. (Eds.), Brain and Behavior in Human Development (pp. 513–537). Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
Gordon, A. M. & Duff, S. V. (1999a). Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. I: Anticipatory scaling. Dev Med Child Neurol, 41, 166–175.CrossRefGoogle ScholarPubMed
Gordon, A. M. & Duff, S. V. (1999b). Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 41, 586–591.CrossRefGoogle ScholarPubMed
Gordon, A. M. & Steenbergen, B. (2008). Bimanual coordination in children with cerebral palsy. In Eliasson, A. C. & Burtner, P. (Eds.), Child with Cerebral Palsy: Management of the Upper Extremity. Clinics in Developmental Medicine (pp. 160–175). London: MacKeith Press.Google Scholar
Gordon, A. M., Charles, J. & Duff, S. V. (1999). Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. II: Bilateral coordination. Dev Med Child Neurol, 41, 176–185.CrossRefGoogle ScholarPubMed
Gordon, A. M., Lewis, S. R., Eliasson, A. C. & Duff, S. V. (2003). Object release under varying task constraints in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 45, 240–248.CrossRefGoogle ScholarPubMed
Gordon, A. M., Charles, J. & Wolf, S. L. (2005). Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Arch Phys Med Rehabil, 86, 837–844.CrossRefGoogle ScholarPubMed
Gordon, A. M., Charles, J. & Steenbergen, B. (2006a). Fingertip force planning during grasp is disrupted by impaired sensorimotor integration in children with hemiplegic cerebral palsy. Pediatr Res, 60, 587–591.CrossRefGoogle ScholarPubMed
Gordon, A. M., Charles, J. & Wolf, S. L. (2006b). Efficacy of constraint-induced movement therapy on involved upper extremity use in children with hemiplegic cerebral palsy is not age dependent. Pediatrics, 117, 363–373.CrossRefGoogle Scholar
Gordon, A. M., Schneider, J. A., Chinnan, A. & Charles, J. (2007). Efficacy of hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol, 49, 730–739.CrossRefGoogle ScholarPubMed
Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Res Brain Res Rev, 36, 169–174.CrossRefGoogle Scholar
Himmelmann, K., Hagberg, G., Beckung, E., Hagberg, B. & Uvebrant, P. (2005). The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr, 94, 287–294.CrossRefGoogle ScholarPubMed
Himmelmann, K., Beckung, E., Hagberg, G. & Uvebrant, P. (2006). Gross and fine motor function and accompanying impairments in cerebral palsy. Dev Med Child Neurol, 48, 417–423.CrossRefGoogle ScholarPubMed
Hoare, B. J., Wasiak, J., Imms, C. & Carey, L. (2007). Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy. Cochrane Database Syst Rev, CD004149.CrossRefGoogle ScholarPubMed
Holmefur, M., Krumlinde-Sundholme, L. & Eliasson, A. C. (2007). Interrater and intrarater reliability of the Assisting Hand Assessment. Am J Occup Ther, 61, 80–85.CrossRefGoogle ScholarPubMed
Hung, Y. C., Charles, J. & Gordon, A. M. (2004). Bimanual coordination during a goal-directed task in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 46, 746–753.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res (Berlin), 56, 550–564.Google ScholarPubMed
Juenger, H., Linder-Lucht, M., Walther, M.et al. (2007). Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study. Neuropediatrics, 38(3): 130–136.CrossRefGoogle ScholarPubMed
Ketelaar, M., Vermeer, A., Hart, H., Petegem-Van Beek, E. & Helders, P. J. (2001). Effects of a functional therapy program on motor abilities of children with cerebral palsy. Phys Ther, 81, 1534–1545.CrossRefGoogle ScholarPubMed
Kleim, J. A., Barbay, S., Cooper, N. R.et al. (2002). Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. 77, 63–77.CrossRef
Koman, L. A., Smith, B. P. & Shilt, J. S. (2004). Cerebral palsy. Lancet, 363, 1619–1631.CrossRefGoogle ScholarPubMed
Krageloh-Mann, I. (2004). Imaging of early brain injury and cortical plasticity. Exp Neurol, 190 Suppl 1, S84–S90.CrossRefGoogle ScholarPubMed
Krageloh-Mann, I. (2005). Cerebral palsy: towards developmental neuroscience. Dev Med Child Neurol, 47, 435.CrossRefGoogle ScholarPubMed
Krumlinde-Sundholm, L. & Eliasson, A. C. (2003). Development of the assisting hand assessment: a Rasch-built measure intended for children with unilateral upper limb impairments. Scan J Occup Ther, 10, 16–26.CrossRefGoogle Scholar
Krumlinde-Sundholme, L., Holmefur, M., Kottorp, A. & Eliasson, A. C. (2007). The Assisting Hand Assessment: current evidence of validity, reliability and responsiveness to change. Dev Med Child Neurol, 49, 259–264.CrossRefGoogle Scholar
Law, M., Darrah, J., Pollock, N.et al. (1998). Family-centered functional therapy for children with cerebral palsy: an emerging practical model. Phys Occup Ther Pediatr, 18, 83–102.Google Scholar
Lin, J. P. (2003). The cerebral palsies: a physiological approach. J Neurol Neurosurg Psychiatry, 74 Suppl. 1, i23–i29.CrossRefGoogle ScholarPubMed
Marshall, R. S., Perera, G. M., Lazar, R. M.et al. (2000). Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke, 31, 656–661.CrossRefGoogle ScholarPubMed
Martin, J. H. (2005). The corticospinal system: from development to motor control. Neuroscientist, 11, 161–173.CrossRefGoogle ScholarPubMed
Martin, J. H., Choy, M., Pullman, S. & Meng, Z. (2004). Corticospinal system development depends on motor experience. J Neurosci, 24, 2122–2132.CrossRefGoogle ScholarPubMed
Martin, J. H., Friel, K. M., Salimi, I. & Chakrabarty, S. (2007) Activity- and use-dependent plasticity of the developing corticospinal system. Neurosci Biobehav Rev, 31, 1125–1135.CrossRefGoogle ScholarPubMed
Naylor, C. E. & Bower, E. (2005). Modified constraint-induced movement therapy for young children with hemiplegic cerebral palsy: a pilot study. Dev Med Child Neurol, 47, 365–369.CrossRefGoogle ScholarPubMed
Nudo, R. J. (2003). Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med, 41, 7–10.CrossRefGoogle Scholar
Ochsner, K. & Lieberman, M. (2001). The emergence of social cognitive neuroscience. Am Psychol, 56, 717–734.CrossRefGoogle ScholarPubMed
Okumura, A., Kato, T., Kuno, K., Hayakawa, F. & Watanabe, K. (1997). MRI findings in patients with spastic cerebral palsy. II: correlation with type of cerebral palsy. Dev Med Child Neurol (Lond), 39, 369–372.Google ScholarPubMed
Ostendorf, C. G. & Wolf, S. L. (1981). Effect of forced use of the upper extremity of a hemiplegic patient on changes in function. Phys Ther, 61, 1022–1028.CrossRefGoogle Scholar
Rose, D. K. & Winstein, C. J. (2004). Bimanual training after stroke: are two hands better than one? Top Stroke Rehabil, 11, 20–30.CrossRefGoogle ScholarPubMed
Skold, A., Josephsson, S. & Eliasson, A. C. (2004). Performing bimanual activities: the experiences of young persons with hemiplegic cerebral palsy. Am J Occup Ther, 58, 416–425.CrossRefGoogle ScholarPubMed
Stanely, F., Blair, E. & Alberman, E. (2000). Cerebral Palsies: Epidemiology and Causal Pathways. Clinics in Developmental Medicine No. 151. London: MacKeith Press.Google Scholar
Staudt, M., Grodd, W., Gerloff, C.et al. (2002). Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain, 125, 2222–2237.CrossRefGoogle ScholarPubMed
Staudt, M., Gerloff, C., Grodd, W.et al. (2004). Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol, 56, 854–863.CrossRefGoogle ScholarPubMed
Staudt, M., Krageloh-Mann, I. & Grodd, W. (2005). Ipsilateral corticospinal pathways in congenital hemiparesis on routine magnetic resonance imaging. Pediatr Neurol, 32, 37–39.CrossRefGoogle ScholarPubMed
Steenbergen, B. & Gordon, A. M. (2006). Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Dev Med Child Neurol, 48, 780–783.CrossRefGoogle ScholarPubMed
Steenbergen, B., Hulstijn, W., Vries, A. & Berger, M. (1996). Bimanual movement coordination in spastic hemiparesis. Exp Brain Res (Berlin), 110, 91–98.CrossRefGoogle ScholarPubMed
Steenbergen, B., Verrel, J. & Gordon, A. M. (2007). Motor planning in congenital hemiplegia. Disabil Rehabil, 29, 13–23.CrossRefGoogle ScholarPubMed
Stinear, J. W. & Byblow, W. D. (2004). Rhythmic bilateral movement training modulates corticomotor excitability and enhances upper limb motoricity poststroke: a pilot study. J Clin Neurophysiol, 21, 124–131.CrossRefGoogle Scholar
Sunderland, A. & Tuke, A. (2005). Neuroplasticity, learning and recovery after stroke: a critical evaluation of constraint-induced therapy. Neuropsychol Rehab, 15, 81–96.CrossRefGoogle ScholarPubMed
Sung, I. Y., Ryu, J. S., Pyun, S. B.et al. (2005). Efficacy of forced-use therapy in hemiplegic cerebral palsy. Arch Phys Med Rehabil, 86, 2195–2198.CrossRefGoogle ScholarPubMed
Taub, E. & Shee, L. P. (1980). Somatosensory Deafferentation Research with Monkeys: Implications for Rehabilitation Medicine. Baltimore, MD: Williams Wilkins.Google Scholar
Taub, E. & Wolf, S. L. (1997). Constraint induction techniques to facilitate upper extremity use in stroke patients. Topics Stroke Rehab, 3, 38–61.CrossRefGoogle Scholar
Taub, E., Goldberg, I. A. & Taub, P. B. (1975). Deafferentation in monkeys: pointing at a target without visual feedback. Exp Neurol, 46, 178–186.CrossRefGoogle Scholar
Taub, E., Ramey, S. L., Deluca, S. & Echols, K. (2004). Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics, 113, 305–312.CrossRefGoogle ScholarPubMed
Taub, E., Uswatte, G., Mark, V. W. & Morris, D. M. (2006). The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys, 42, 241–256.Google ScholarPubMed
Taub, E., Griffin, A., Nick, J.et al. (2007). Pediatric CI therapy for stroke-induced hemiparesis in young children. Dev Neurorehabil, 10, 3–18.CrossRefGoogle ScholarPubMed
Tower, S. S. (1940). Pyramidal lesion in the monkey. Brain (London), 63, 36–90.CrossRefGoogle Scholar
Uswatte, G., Giuliani, C., Winstein, C.et al. (2006). Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: evidence from the extremity constraint-induced therapy evaluation trial. Arch Phys Med Rehabil, 87, 1340–1345.CrossRefGoogle ScholarPubMed
Utley, A. & Steenbergen, B. (2006). Discrete bimanual co-ordination in children and young adolescents with hemiparetic cerebral palsy: recent findings, implications and future research directions. Pediatr Rehabil, 9, 127–136.CrossRefGoogle Scholar
Utley, A. & Sugden, D. (1998). Interlimb coupling in children with hemiplegic cerebral palsy during reaching and grasping at speed. Dev Med Child Neurol (Lond), 40, 396–404.Google ScholarPubMed
Uvebrant, P. (1988). Hemiplegic cerebral palsy aetiology and outcome. Acta Paediatr Scand Suppl (Stockholm), 1–100.Google ScholarPubMed
Welford, A. T. (1968). Fundamentals of Skill. London: Methuen & Co.Google Scholar
Willis, J. K., Morello, A., Davie, A., Rice, J. C. & Bennett, J. T. (2002). Forced use treatment of childhood hemiparesis. Pediatrics, 110, 94–96.CrossRefGoogle ScholarPubMed
Wolf, S. L., Lecraw, D. E., Barton, L. A. & Jann, B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol (New York), 104, 125–132.CrossRefGoogle ScholarPubMed
Wolf, S. L., Blanton, S., Baer, H., Breshears, J. & Butler, A. J. (2002). Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist, 8, 325–338.Google ScholarPubMed
Wolf, S. L., Winstein, C. J., Miller, J. P.et al. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. J Am Med Assoc, 296, 2095–2104.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×