Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T13:45:49.240Z Has data issue: false hasContentIssue false

3 - The interplay of intracolonial genotypic variance and self-organisation of dominance hierarchies in honeybees

Published online by Cambridge University Press:  07 December 2009

Robin F. A. Moritz
Affiliation:
Martin-Luther-Universität Halle-Wittenberg
Robin M. Crewe
Affiliation:
University of Pretoria
Charlotte Hemelrijk
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Multiple mating in social insects

Multiple mating of females (polyandry) is a rare phenomenon in social hymenoptera (Strassmann, 2001). The adaptive value of single mating seems obvious: females should mate with as few males as possible to minimise predation risk during mating, the energy costs involved in mating and the chance of contracting a disease. Most importantly, polyandry nullifies the benefits of male haploidy for the inclusive fitness of the sterile workers in the colony. Multiple mating dramatically reduces the intracolonial relatedness (Boomsma and Ratnieks, 1996) and hence reduces the force of the arguments of kin selection theory (Hamilton 1964a, b), because the high intracolonial genotypic diversity creates an extreme potential for conflict among the nest members. Fourteen evolutionary rescue hypotheses have been identified to explain the potential benefits of polyandry in spite of the additional mating costs (Crozier and Fjerdingstad, 2001).

Although considerable effort has been expended to explain the evolution of polyandry, the consequences of polyandry for the organisation of the society have received less attention. The honeybees (Apis spp.) may be an exception in this regard. This is primarily due to a relatively large research community working on Apis because of its economic significance. The knowledge accumulated on the biology of Apis exceeds that of other social insects by far. The other rather fortunate property is the extreme degree of polyandry in the honeybee (Palmer and Oldroyd, 2000). Multiple mating in Apis can exceed 50 drones per queen (Moritz et al., 1995, Palmer and Oldroyd, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, M., Jordan, R., Ruttner, F. and Ruttner, H. (1955). Von der Paarung der Honigbiene. Z. Bienenforsch. 3, 1–28Google Scholar
Boomsma, J. J. and Ratnieks, F. L. W. (1996). Paternity in eusocial Hymenoptera. Phil. Trans. Roy. Soc. London B 351, 947–975CrossRefGoogle Scholar
Butler, C. G. (1959). Queen substance. Bee World 40, 269–275CrossRefGoogle Scholar
Butler, C. G., Callow, R. K., Johnston, F. R. S. and Johnston, N. C. (1962). The isolation and synthesis of queen substance, 9-oxodec-trans-2-enoic acid, a honeybee pheromone. Proc. Roy. Entomol. Soc. London 155, 417–432CrossRefGoogle Scholar
Crewe, R. M., Moritz, R. F. A. and Lattorff, M. (2004). Using silicon tubes for trapping volatile compounds on biological surfaces in vivo. Chemoecol. 14, 77–79CrossRefGoogle Scholar
Crozier, R. H. and Fjerdingstad, E. J. (2001). Polyandry in social Hymenoptera: disunity in diversity?Ann. Zool. Fenn. 38, 267–285Google Scholar
Haberl, M. and Tautz, D. (1998). Sperm usage in honey bees. Behav. Ecol. Sociobiol. 42, 247–255CrossRefGoogle Scholar
Hamilton, W. D. (1964a). The genetical evolution of social behaviour. I. J. Theoret. Biol. 7, 1–16CrossRefGoogle Scholar
Hamilton, W. D. (1964b). The genetical evolution of social behaviour. II. J. Theoret. Biol. 7, 17–52CrossRefGoogle Scholar
Hillesheim, E., Koeniger, N. and Moritz, R. F. A. (1989). Colony performance in honeybees (Apis mellifera capensis) depends on the proportion of subordinate and dominant workers. Behav. Ecol. Sociobiol. 24, 291–296CrossRefGoogle Scholar
Hunt, G. J., Page, R. E. and Fondrk, M. K. (1995a). Identification of quantitative trait loci that affect pollen-hoarding behavior in the honeybee. J. Cell Biochem. Suppl. 21A, 196–198Google Scholar
Hunt, G. J., Page, R. E. and Fondrk, M. K. (1995b). Major quantitative trait loci affecting honeybee foraging behavior. Genetics 141, 1537–1545Google Scholar
Hunt, G. J., Collins, A. M, Rivera, R., Page, R. E. and Guzman-Novoa, E. (1999). Quantitative trait loci influencing honeybee alarm pheromone levels. J. Hered. 90, 585–589CrossRefGoogle ScholarPubMed
Kryger, P., Kryger, U. and Moritz, R. F. A. (2000). Genotypical variability for the tasks of water collecting and scenting in a honey bee colony. Ethology 106, 769–779CrossRefGoogle Scholar
Moritz, R. F. A. and Hillesheim, E. (1985). Inheritance of dominance in honeybees (Apis mellifera capensis). Behav. Ecol. Sociobiol. 17, 87–89CrossRefGoogle Scholar
Moritz, R. F. A., Kryger, P. and Koeniger, G.et al. (1995). High degree of polyandry in Apis dorsata queens detected by microsatellite variability. Behav. Ecol. Sociobiol. 37, 357–363CrossRefGoogle Scholar
Moritz, R. F. A., Kryger, P. and Allsopp, M. (1996). Competition for royalty in bees. Nature 384, 31CrossRefGoogle Scholar
Moritz, R. F. A., Beye, M. and Hepburn, H. R. (1998). Estimating the contribution of laying workers to population fitness in African honeybees (Apis mellifera) with molecular markers. Insects Soc. 45, 277–287CrossRefGoogle Scholar
Moritz, R. F. A., Simon, U. E. and Crewe, R. M. (2000). Pheromonal contest between honeybee workers. Naturwiss. 87, 395–397CrossRefGoogle ScholarPubMed
Moritz, R. F. A., Crewe, R. M. and Hepburn, H. R. (2001). The role of the queen in the distribution of workers in the honeybee colony. Ethology 107, 1–13Google Scholar
Moritz, R. F. A., Crewe, R. M. and Lattorf, M. (2003). Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Proc. Roy. Soc. London 271: S98–S100CrossRefGoogle Scholar
Neumann, P. and Moritz, R. F. A. (2002). The Cape Honeybee phenomenon: the sympatric evolution of a social parasite in real time. Behav. Ecol. Sociobiol. 52, 271–281Google Scholar
Page, R. E. (1986). Sperm utilization in social insects. Annu. Rev. Entomol. 10, 359–361Google Scholar
Page, R. E. and Mitchell, S. D. (1998). Self-organization and the evolution of division of labor. Apidologie 29, 171–190CrossRefGoogle Scholar
Page, R. E., Fondrk, M. K., Hunt, G. J.et al. (2000). Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J. Hered. 91, 474–479CrossRefGoogle ScholarPubMed
Palmer, K. and Oldroyd, B. P. (2000). Evolution of multiple mating in the genus Apis. Apidologie 31, 235–248CrossRefGoogle Scholar
Palmer, K. and Oldroyd, B. P. (2001). Mating frequency in Apis florea revisited (Hymenoptera, Apidae). Insectes Soc. 48, 40–43CrossRefGoogle Scholar
Plettner, E., Slessor, K. N., Winston, M. L. and Oliver, J. E. (1996). Caste-selective pheromone biosynthesis in honeybees. Science 271, 1851–1853CrossRefGoogle Scholar
Plettner, E., Slessor, K. N. and Winston, M. L. (1998). Biosynthesis of mandibular acids in honey bees (Apis mellifera): de novo synthesis, route of fatty acid hydroxylation and caste selective beta-oxidation. Insect Biochem. Mol. Biol. 28, 31–42CrossRefGoogle Scholar
Ratnieks, F. L. W. (1988). Reproductive harmony via mutual policing by workers in eusocial insects. Am. Naturalist 132, 217–236Google Scholar
Robinson, G. E. and Page, R. E. (1988). Genetic determination of guarding and undertaking in honey bee colonies. Nature 333, 356–358CrossRefGoogle Scholar
Schlüns, H., Moritz, R. F. A. and Kryger, P. (2001). Behavioral control over mating frequency in queen honeybees (Apis mellifera L.): revisiting the sperm-limitation-hypothesis. In Proc. 2001 Berlin Mg European Sections of IUSSI, p. 105
Seeley, T. D. (1979). Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol. 5, 391–415CrossRefGoogle Scholar
Simon, U. E., Moritz, R. F. A. and Crewe, R. M. (2001). The ontogenetic pattern of mandibular gland components in queenless worker bees (Apis mellifera capensis Esch.). J. Insect Physiol. 47, 735–738CrossRefGoogle Scholar
Strassmann, J. (2001). The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc. 48, 1–13CrossRefGoogle Scholar
Taber, S. (1955). Sperm distribution in the spermathecae of multiple-mated queen honey bees. J. Econ. Entomol. 48, 522–525CrossRefGoogle Scholar
Tarpy, D. R. and Page, R. E. (2000). No behavioral control over mating frequency in queen honeybees (Apis mellifera L.): implications for the evolution of extreme polyandry. Am. Naturalist 155, 820–827CrossRefGoogle Scholar
Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B 237, 37–72CrossRefGoogle Scholar
Velthuis, H. H. W. (1972). Observations of the transmission of queen substances in the honeybee colony by the attendants of the queen. Behaviour 41, 105–129CrossRefGoogle Scholar
Winston, M. L. and Slessor, K. N. (1992). The essence of royalty: honey bee queen pheromone. Am. Sci. 80, 374–385Google Scholar
Winston, M. L. and Slessor, K. N. (1998). Honey bee primer pheromones and colony organization: gaps in our knowledge. Apidologie 29, 81–95CrossRefGoogle Scholar
Wossler, T. C. (2002). Pheromone mimicry by Apis mellifera capensis social parasites leads to reproductive anarchy in host Apis mellifera scutellata colonies. Apidologie 33, 139–163CrossRefGoogle Scholar
Woyke, J. (1960). Natural and artificial insemination of queen honey bees. Pszczelnicze Zeszyty Naukowe 4, 183–275Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×