Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T23:41:51.658Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 March 2019

Edward S. Krebes
Affiliation:
University of Calgary
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Seismic Wave Theory , pp. 338 - 343
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, J.D. (1973). Wave Propagation in Elastic Solids. New York: North-Holland Publishing Co.Google Scholar
Aki, K. and Richards, P.G. (1980). Quantitative Seismology: Theory and Methods (vols. I and II). San Francisco: W.H. Freeman and Co.Google Scholar
Aki, K. and Richards, P.G. (2002). Quantitative Seismology, 2nd edn. Sausalito: University Science Books.Google Scholar
Arfken, G. (1985). Mathematical Methods for Physicists, 3rd edn. New York: Academic Press.Google Scholar
Båth, M. and Berkhout, A.J. (1984). Mathematical Aspects of Seismology. London: Geophysical Press.Google Scholar
Ben-Menahem, A. and Singh, S.J. (2000). Seismic Waves and Sources, 2nd edn. (corrected). New York: Dover.Google Scholar
Bland, D.R. (1960). The Theory of Linear Viscoelasticity. New York: Pergamon Press.Google Scholar
Brekhovskikh, L.M. (1980). Waves in Layered Media, 2nd edn. New York: Academic Press.Google Scholar
Brown, R.J., Stewart, R.R., and Lawton, D.C. (2002). A proposed polarity standard for multicomponent seismic data. Geophysics, 67, 10281037.CrossRefGoogle Scholar
Borcherdt, R.D. (1973). Energy and plane waves in viscoelastic media. J. Geophys. Res., 78, 24422453.CrossRefGoogle Scholar
Borcherdt, R.D. (1977). Reflection and refraction of type-II S waves in elastic and anelastic media. Bull. Seism. Soc. Am., 67, 4367.CrossRefGoogle Scholar
Borcherdt, R.D. (2009). Viscoelastic Waves in Layered Media. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bouzidi, Y. and Schmitt, D.R. (2012). Incidence-angle-dependent acoustic reflections from liquid-saturated porous solids. Geophys. J. Int., 191, 14271440.Google Scholar
Buchen, P.W. (1971). Plane waves in linear viscoelastic media. Geophys. J. R. Astr. Soc., 23, 531542.CrossRefGoogle Scholar
Bullen, K.E. and Bolt, B.A. (1985). An Introduction to the Theory of Seismology, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Carcione, J.M. (2001). Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Amsterdam: Pergamon Press, Elsevier Science Ltd.Google Scholar
Carcione, J.M. (2007). Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Amsterdam: Pergamon Press, Elsevier Science Ltd.Google Scholar
Červený, V., 2001. Seismic Ray Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Červený, V. and Pšenčík, I. (2008). Quality factor Q in dissipative anisotropic media. Geophysics, 73, T63–T75.CrossRefGoogle Scholar
Červený, V. and Ravindra, R. (1971). Theory of Seismic Head Waves. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Červený, V., Molotkov, I.A., and Pšenčík, I. (1977). Ray Method in Seismology. Prague: Charles University.Google Scholar
Chabot, L. (2000). Supplemental visual aids for the Seismic Theory and Methods course, Department of Geoscience, University of Calgary. Unpublished.Google Scholar
Chabot, L., Henley, D.C., Brown, R.J., and Bancroft, J.C. (2001). Single-well seismic imaging using the full waveform of an acoustic sonic. CREWES Research Report, 13, 583600. Department of Geoscience, University of Calgary.Google Scholar
Chaisri, S. and Krebes, E.S. (2000). Exact and approximate formulas for P-SV reflection and transmission coefficients for a non-welded contact interface. J. Geophys. Res., 105, 2804528054.CrossRefGoogle Scholar
Chapman, C.H. (2004). Fundamentals of Seismic Wave Propagation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Christensen, R.M. (1971). Theory of Viscoelasticity: An Introduction. New York: Academic Press.Google Scholar
Chun, J.H. and Jacewitz, C.A. (1981). Fundamentals of frequency domain migration. Geophysics, 46, 717733.CrossRefGoogle Scholar
Claerbout, J.F. (1976). Fundamentals of Geophysical Data Processing. New York: McGraw-Hill.Google Scholar
Claerbout, J.F. (1985). Imaging the Earth’s Interior. Oxford: Blackwell Scientific Publications.Google Scholar
Cui, X., Lines, L., Krebes, E.S., and Peng, S. (2018). Seismic Forward Modeling of Fractures and Fractured Medium Inversion. Singapore: Springer Nature.CrossRefGoogle Scholar
Dahlen, F.A. and Tromp, J. (1998). Theoretical Global Seismology. Princeton: Princeton University Press.Google Scholar
Dai, N., Kanasewich, E., and Vafidis, A. (1993). Finite-difference modeling of viscoelastic waves. Presented at the national convention of the Canadian Society of Exploration Geophysicists.Google Scholar
Daley, P.F. and Hron, F. (1977). Reflection and transmission coefficients for transversely isotropic media. Bull. Seism. Soc. Am., 67, 661675.CrossRefGoogle Scholar
Daley, P.F. and Hron, F. (1979). Reflection and transmission coefficients for seismic waves in ellipsoidally anisotropic media. Geophysics, 44, 2738.CrossRefGoogle Scholar
Dettmer, J., Dosso, S.E., and Holland, C.W. (2007). Full wave-field reflection coefficient inversion. J. Acoust. Soc. Am., 122, 33273337.CrossRefGoogle ScholarPubMed
Diebold, J.B. and Stoffa, P.L. (1981). The traveltime equation, tau-p mapping and inversion of common midpoint data. Geophysics, 46, 238254.CrossRefGoogle Scholar
Dix, C.H. (1955). Seismic velocities from surface measurements. Geophysics, 20, 6886.CrossRefGoogle Scholar
Dobrin, M.B. (1976). Introduction to Geophysical Prospecting, 3rd edn. New York: McGraw-Hill.Google Scholar
Dobrin, M.B., Lawrence, P.L., and Sengbush, R.L. (1954). Surface and near-surface waves in the Delaware Basin. Geophysics, 19, 695715.CrossRefGoogle Scholar
Dobrin, M.B., Simon, R.F., and Lawrence, P.L. (1951). Rayleigh waves from small explosions. Trans. Am. Geophys. Un., 32, 822832.Google Scholar
Eaton, D.W.S. (1993). Finite-difference traveltime calculation for anisotropic media. Geophys. J. Int., 114, 273280.CrossRefGoogle Scholar
Elmore, W.C. and Heald, M.A. (1969). Physics of Waves. New York: McGraw-Hill.Google Scholar
Emmerich, H. and Korn, M. (1987). Incorporation of attenuation into time-domain computation of seismic wavefields. Geophysics, 52, 12521264.CrossRefGoogle Scholar
Ewing, W.M., Jardetzky, W.S., and Press, F. (1957). Elastic Waves in Layered Media. New York: McGraw-Hill.CrossRefGoogle Scholar
Feng, R. and McEvilly, T.V. (1983). Interpretation of seismic reflection profiling data for the structure of the San Andreas Fault zone. Bull. Seism. Soc. Am., 73, 17011720.CrossRefGoogle Scholar
French, A.P. (1971). Vibrations and Waves. New York: W.W. Norton.Google Scholar
French, W.S. (1975). Computer migration of oblique seismic reflection profiles. Geophysics, 40, 961980.CrossRefGoogle Scholar
Fung, Y.C. (1965). Foundations of Solid Mechanics. Englewood Cliffs: Prentice Hall.Google Scholar
Gassmann, F. (1964). Introduction to seismic travel time methods in anisotropic media. Pure and Appl. Geophys., 58, 63112.CrossRefGoogle Scholar
Gazdag, J. and Sguazzero, P. (1984). Migration of seismic data by phase shift plus interpolation. Geophysics, 49, 124131.CrossRefGoogle Scholar
Graebner, M. (1992). Plane-wave reflection and transmission coefficients for a transversely isotropic solid. Geophysics, 57, 15121519.CrossRefGoogle Scholar
Grant, F.S. and West, G.F. (1965). Interpretation Theory in Applied Geophysics. NewYork: McGraw-Hill.Google Scholar
Graul, J.M. and Hilterman, F.J. (1979). Unpublished notes on seismic methods.Google Scholar
Guevara, S.E. (2001). Analysis and filtering of near-surface effects in land multicomponent seismic data. M.Sc. thesis, Department of Geoscience, University of Calgary.Google Scholar
Hagedoorn, J.G. (1954). A process of seismic reflection interpretation. Geophys. Prosp., 2, 85127.CrossRefGoogle Scholar
Hatton, L., Larner, K.L., and Gibson, B.S. (1981). Migration of seismic data from inhomogeneous media. Geophysics, 46, 751767.CrossRefGoogle Scholar
Hilterman, F.J. (1970). Three-dimensional seismic modeling. Geophysics, 35, 10201037.CrossRefGoogle Scholar
Hilterman, F.J. (1975). Amplitudes of seismic waves – a quick look. Geophysics, 40, 745762.CrossRefGoogle Scholar
Hubral, P. (1977). Time migration – some ray theoretical aspects. Geophys. Prosp., 25, 738745.CrossRefGoogle Scholar
Hudson, J.A. (1980). The Excitation and Propagation of Elastic Waves. Cambridge: Cambridge University Press.Google Scholar
Ikelle, L.T. and Amundsen, L. (2018). Introduction to Petroleum Seismology, 2nd edn. Tulsa: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Innanen, K.A. (2011). Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics, 76, R1–R14.CrossRefGoogle Scholar
Innanen, K.A. (2012a). Anelastic P-wave, S-wave and converted-wave AVO approximations. 74th Annual International Conference and Exhibition, EAGE, Extended Abstracts, P197. Netherlands: EAGE (European Association of Geoscientists and Engineers)Google Scholar
Innanen, K.A. (2012b). Exact and approximate anelastic reflection coefficients. CREWES Research Report, 24, Department of Geoscience, University of Calgary.Google Scholar
Kanamori, H. and Anderson, D.L. (1977). Importance of physical dispersion in surface wave and free oscillation problems: review. Reviews of Geophysics and Space Physics, 15, 105112.CrossRefGoogle Scholar
Kay, I. and Krebes, E.S. (1999). Applying finite element analysis to the memory variable formulation of wave propagation in anelastic media. Geophysics, 64, 300307.CrossRefGoogle Scholar
Kennett, B.L.N (2001). The Seismic Wavefield – Volume I: Introduction and Theoretical Development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kennett, B.L.N. (2002). The Seismic Wavefield – Volume II: Interpretation of Seismograms on Regional and Global Scales. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kennett, B.L.N. and Bunge, H.-P. (2018). Geophysical Continua. Cambridge: Cambridge University Press.Google Scholar
Kjartansson, E. (1979). Constant Q – wave propagation and attenuation. J. Geophys. Res., 84, 47374748.CrossRefGoogle Scholar
Klem-Musatov, K., Hoeber, H.C., Moser, T.J., and Pelissier, M.A. (2016a). Classical and Modern Diffraction Theory. Geophysics Reprint Series No. 29. Tulsa: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Klem-Musatov, K., Hoeber, H.C., Moser, T.J., and Pelissier, M.A. (2016b). Seismic Diffraction. Geophysics Reprint Series No. 30. Tulsa: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Krebes, E.S. (1983). The viscoelastic reflection/transmission problem: two special cases. Bull. Seism. Soc. Am., 73, 16731683.CrossRefGoogle Scholar
Krebes, E.S. (2004). Seismic forward modeling. CSEG Recorder, 29 (April), 2839.Google Scholar
Krebes, E.S. and Daley, P.F. (2007). Difficulties with computing anelastic plane wave reflection and transmission coefficients. Geophys. J. Int., 170, 205216.CrossRefGoogle Scholar
Krebes, E.S. and Hron, F. (1980). Ray-synthetic seismograms for SH waves in anelastic media. Bull. Seism. Soc. Am., 70, 2946.CrossRefGoogle Scholar
Krebes, E.S. and Le, L.H.T. (1994). Inhomogeneous plane waves and cylindrical waves in anisotropic anelastic media. J. Geophys. Res., 99, 2389923919.CrossRefGoogle Scholar
Krebes, E.S. and Quiroga-Goode, G. (1994). A standard finite difference scheme for the time domain computation of anelastic wavefields. Geophysics, 59, 290296.CrossRefGoogle Scholar
Larner, K.L., Hatton, L., Gibson, B.S., and Hsu, I-C. (1981). Depth migration of imaged time sections. Geophysics, 46, 734750.CrossRefGoogle Scholar
Lay, T. and Wallace, T.C. (1995). Modern Global Seismology. New York: Academic Press.Google Scholar
Levander, A.R. (1988). Fourth-order finite-difference P-SV seismograms. Geophysics, 53, 14251436.CrossRefGoogle Scholar
Liner, C. (2016). Elements of 3D Seismology. Tulsa: Society of Exploration Geophysicists.CrossRefGoogle Scholar
Lines, L., Wong, J., Innanen, K., Vasheghani, F., Sondergeld, C., Treitel, S., Ulrych, T. (2014). Research note: experimental measurements of Q-contrast reflections. Geophys. Prosp., 62, 190195.CrossRefGoogle Scholar
Liu, H-P., Anderson, D.L., and Kanamori, H. (1976). Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. R. Astr. Soc., 47, 4158.CrossRefGoogle Scholar
Loewenthal, D., Lu, L., Roberson, R., and Sherwood, J.W.C. (1976). The wave equation applied to migration. Geophys. Prosp., 24, 380399.CrossRefGoogle Scholar
Lomnitz, C. (1956). Creep measurements in igneous rocks. J. Geology, 64, 473479.CrossRefGoogle Scholar
Lomnitz, C. (1957). Linear dissipation in solids. J. Appl. Phys., 28, 201205.CrossRefGoogle Scholar
Mari, J.L. (1984). Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves. Geophysics, 49, 11691179.CrossRefGoogle Scholar
Martinez Fernandez, P.E. (2014). Application of a finite-difference scheme for the time-domain computation of 1D anelastic wavefields to fractured media. M.Sc. thesis, Department of Geoscience, University of Calgary.Google Scholar
Mathews, J. and Walker, R.L. (1970). Mathematical Methods of Physics, 2nd edn. New York: W.A. Benjamin, Inc.Google Scholar
May, B.T. and Covey, J.D. (1981). An inverse ray method for computing geologic structures from seismic reflections: zero-offset case. Geophysics, 46, 268287.CrossRefGoogle Scholar
May, B.T. and Hron, F. (1978). Synthetic seismic sections of typical petroleum traps. Geophysics, 43, 11191147.CrossRefGoogle Scholar
Moczo, P., Bystrický, E., Kristek, J., Carcione, J.M., and Bouchon, M. (1997). Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. Bull. Seism. Soc. Am., 87, 13051323.CrossRefGoogle Scholar
Moczo, P., Kristek, J., and Galis, M. (2014). The Finite-Difference Modelling of Earthquake Motions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moradi, S. and Innanen, K.A. (2016). Viscoelastic amplitude variation with offset equations with account taken of jumps in attenuation angle. Geophysics, 81, N17N29.CrossRefGoogle Scholar
Narod, B.B. and Yedlin, M.J. (1986). A basic acoustic diffraction experiment for demonstrating the geometrical theory of diffraction. Am. J. Phys., 54, 11211126.CrossRefGoogle Scholar
Officer, C.B. (1974). Introduction to Theoretical Geophysics. Berlin: Springer-Verlag.Google Scholar
Pekeris, C.L. (1948). Theory of propagation of explosive sound in shallow water. Geol. Soc. Amer. Mem., 27.Google Scholar
Petten, C.C. and Margrave, G.F. (2012). Using the Sharpe Hollow Cavity Model to investigate power and frequency content of explosive pressure sources. CREWES Research Report, 24, Department of Geoscience, University of Calgary.Google Scholar
Pujol, J. (2003). Elastic Wave Propagation and Generation in Seismology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Richards, P.G. (1984). On wavefronts and interfaces in anelastic media. Bull. Seism. Soc. Am., 74, 21572165.CrossRefGoogle Scholar
Ricker, N. (1953). The form and laws of propagation of seismic wavelets. Geophysics, 18, 1040.CrossRefGoogle Scholar
Robinson, E.A. (1983). Migration of Geophysical Data. Boston: I. H. R. D. C.Google Scholar
Robinson, E.A. and Treitel, S. (1980). Geophysical Signal Analysis. Englewood Cliffs: Prentice Hall, Inc.Google Scholar
Rothman, D.H., Levin, S.A., and Rocca, F. (1985). Residual migration: applications and limitations. Geophysics, 50, 110126.CrossRefGoogle Scholar
Ruud, B.O. (2006). Ambiguous reflection coefficients for anelastic media. Stud. Geophys. Geod., 50, 479498.CrossRefGoogle Scholar
Schneider, W.A. (1978). Integral formulation for migration in two and three dimensions. Geophysics, 43, 4976.CrossRefGoogle Scholar
Schultz, P.S. and Claerbout, J.F. (1978). Velocity estimation and downward continuation by wavefront synthesis. Geophysics, 43, 691714.CrossRefGoogle Scholar
Sengbush, R.L. (1961). Interpretation of synthetic seismograms. Geophysics, 26, 138157.CrossRefGoogle Scholar
Sengbush, R.L. (1983). Seismic Exploration Methods. Boston: I. H. R. D. C.CrossRefGoogle Scholar
Sharpe, J.A. (1942a). The production of elastic waves by explosion pressures. I. Theory and empirical field observations. Geophysics, 7, 144154.CrossRefGoogle Scholar
Sharpe, J.A. (1942b). The production of elastic waves by explosion pressures. II. Results of observations near an exploding charge. Geophysics, 7, 311321.CrossRefGoogle Scholar
Shearer, P.M. (2009). Introduction to Seismology, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sheriff, R.E. and Geldart, L.P. (1982, 1995). Exploration Seismology. Cambridge: Cambridge University Press.Google Scholar
Shuey, R.T. (1985). A simplification of the Zoeppritz equations. Geophysics, 50, 609614.CrossRefGoogle Scholar
Sidler, R., Carcione, J.M., and Holliger, K. (2008). On the evaluation of plane-wave reflection coefficients in anelastic media. Geophys. J. Int., 175, 94102.CrossRefGoogle Scholar
Slawinski, M.A. (2015). Waves and Rays in Elastic Continua. Singapore: World Scientific Publishing Co. Ltd.CrossRefGoogle Scholar
Slawinski, R. and Krebes, E.S. (2002a). Finite-difference modeling of SH-wave propagation in nonwelded contact media. Geophysics, 67, 16561663.CrossRefGoogle Scholar
Slawinski, R. and Krebes, E.S. (2002b). The homogeneous finite-difference formulation of the P-SV-wave equation of motion. Stud. Geophys. Geod., 46, 731751.CrossRefGoogle Scholar
Spiegel, M.R. (1959). Vector Analysis. Schaum’s Outline Series. New York: McGraw-Hill.Google Scholar
Spiegel, M.R. (1971). Advanced Mathematics for Engineers and Scientists. Schaum’s Outline Series. New York: McGraw-Hill.Google Scholar
Stein, S. and Wysession, M. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure. Oxford: Blackwell Publishing.Google Scholar
Stoffa, P.L., Buhl, P., Diebold, J.B., and Wenzel, F. (1981). Direct mapping of seismic data to the domain of intercept time and ray parameter – a plane wave decomposition. Geophysics, 46, 255267.CrossRefGoogle Scholar
Stolt, R.H. (1978). Migration by Fourier transform. Geophysics, 43, 2348.CrossRefGoogle Scholar
Stolt, R.H. and Benson, A.K. (1986). Seismic Migration: Theory and Practice. London: Geophysical Press.Google Scholar
Strick, E. (1970). A predicted pedestal effect for pulse propagation in constant-Q solids. Geophysics, 35, 387403.CrossRefGoogle Scholar
Sun, Y. (2018). Solutions of the equation of motion with absorption for some common sources. M.Sc. thesis, Department of Geoscience, University of Calgary.Google Scholar
Taner, M.T., Cook, E.E., and Neidell, N.S. (1970). Limitations of the reflection seismic method; lessons from computer simulations. Geophysics, 35, 551573.CrossRefGoogle Scholar
Taner, M.T. and Koehler, F. (1969). Velocity spectra – digital computer derivation and applications of velocity functions. Geophysics, 34, 859881.CrossRefGoogle Scholar
Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A. (1976). Applied Geophysics. Cambridge: Cambridge University Press.Google Scholar
Thomas, M., Ball, V., Blangy, J.P., and Tenorio, L. (2016). Rock-physics relationships between inverted elastic reflectivities. The Leading Edge, 35(5), 438444.CrossRefGoogle Scholar
Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51, 19541966.CrossRefGoogle Scholar
Thomsen, L. (1988). Reflection seismology over azimuthally anisotropic media. Geophysics, 53, 304313.CrossRefGoogle Scholar
Thomsen, L. (1993). Weak anisotropic reflections. In Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis, 103-111, ed. Castagna, J.P. and Backus, M.M.. Tulsa: Society of Exploration Geophysicists.Google Scholar
Trorey, A.W. (1970). A simple theory for seismic diffractions. Geophysics, 35, 762784.CrossRefGoogle Scholar
Udías, A. and Buforn, E. (2018). Principles of Seismology, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Ursin, B., Carcione, J.M., and Gei, D. (2017). A physical solution for plane SH waves in anelastic media. Geophys. J. Int., 209, 661671.CrossRefGoogle Scholar
Wang, Y. (2017). Seismic Inversion: Theory and Applications. Oxford: Wiley Blackwell.Google Scholar
Widess, M.B. (1973). How thin is a thin bed? Geophysics, 38, 11761180.CrossRefGoogle Scholar
Yilmaz, O. (1987). Seismic Data Processing. Tulsa: Society of Exploration Geophysicists.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×