Published online by Cambridge University Press: 05 June 2012
Turbulence at very large Reynolds numbers
Turbulence is the state of vortex fluid motion where the velocity, pressure and other properties of the flow field vary in time and space sharply and irregularly and, it can be assumed, randomly. Turbulent fluid flows surround us, in the atmosphere, in the oceans, in engineering and biological systems. First recognized and examined by Leonardo da Vinci, for the past century turbulence has been studied by engineers, mathematicians and physicists, including such giants as Kolmogorov, Heisenberg, Taylor, Prandtl and von Kármán. Every advance in a wide collection of subjects, from chaos and fractals to field theory, and every increase in the speed and parallelization of computers is heralded as ushering in the solution of the ‘turbulence problem’, yet turbulence remains the greatest challenge of applied mathematics as well as of classical physics.
It is very discouraging that in spite of hard work by an army of scientists and research engineers over more than a century, almost nothing became known about turbulence from first principles, i.e. from the continuity equation and the Navier–Stokes equations (Batchelor 1967; Germain 1986; Landau and Lifshitz 1987).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.