Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phase transitions in simple Systems
- 2 Mean field theory
- 3 The renormalization group idea
- 4 Phase diagrams and fixed points
- 5 The perturbative renormalization group
- 6 Low dimensional Systems
- 7 Surface critical behaviour
- 8 Random Systems
- 9 Polymer statistics
- 10 Critical dynamics
- 11 Conformal symmetry
- Appendix: Gaussian Integration
- Selected Bibliography
- Index
7 - Surface critical behaviour
Published online by Cambridge University Press: 05 February 2015
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phase transitions in simple Systems
- 2 Mean field theory
- 3 The renormalization group idea
- 4 Phase diagrams and fixed points
- 5 The perturbative renormalization group
- 6 Low dimensional Systems
- 7 Surface critical behaviour
- 8 Random Systems
- 9 Polymer statistics
- 10 Critical dynamics
- 11 Conformal symmetry
- Appendix: Gaussian Integration
- Selected Bibliography
- Index
Summary
One of the most striking aspects of critical behaviour is that of the crucial role played by the geometry of the System. Critical exponents depend in a non-trivial manner on the dimensionality d. The very existence of a phase transition depends on the way in which the infinite volume limit is taken, as discussed in Section 4.4. This happens because the critical fluctuations, which determine the universal properties, occur at long wavelengths and are therefore very sensitive to the large scale geometry. By contrast, the non-critical properties of a system are sensitive to fluctuations on the scale of the correlation length and are therefore much less influenced. This line of reasoning also suggests that not all points in a system are equivalent in the way the local degrees of freedom couple to these critical fluctuations. So far, we have considered the behaviour of scaling operators only at points deep inside the bulk of a system. Near a boundary, however, the local environment of a given degree of freedom is different, and we might expect to find different critical properties there. In general, such differences should extend into the bulk only over distances of the order of the bulk correlation length. However, at a continuous bulk phase transition, this distance diverges, and we should expect the influence of boundaries to be more pronounced.
The simplest modification of the bulk geometry to consider is that of a (d − 1)-dimensional hyperplane bounding a semi-infinite d-dimensional system.
- Type
- Chapter
- Information
- Scaling and Renormalization in Statistical Physics , pp. 133 - 144Publisher: Cambridge University PressPrint publication year: 1996