Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T04:14:59.620Z Has data issue: false hasContentIssue false

8 - Saturn’s Ionosphere

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

This chapter summarizes our current understanding of the ionosphere of Saturn. We give an overview of Saturn ionospheric science from the Voyager era to the present, with a focus on the wealth of new data and discoveries enabled by Cassini, including a massive increase in the number of electron density altitude profiles. We discuss recent ground-based detections of the effect of “ring rain” on Saturn’s ionosphere, and present possible model interpretations of the observations. Finally, we outline current model-data discrepancies and indicate how future observations can help in advancing our understanding of the various controlling physical and chemical processes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atreya, S. K., Donahue, T. M., Nagy, A. F. et al. (1984), Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn, in Saturn, pp. 239277, University of Arizona Press, Tucson, AZ.Google Scholar
Barrow, D. J. and Matcheva, K. I. (2013), Modeling the effect of atmospheric gravity waves on Saturn’s ionosphere, Icarus, 224(1), 3242, doi:10.1016/j.icarus.2013.01.027.Google Scholar
Bergin, E. A., Lellouch, E., Harwit, M. et al. (2000), Submillimeter wave astronomy satellite observations of Jupiter and Saturn: Detection of 557 GHz water emission from the upper atmosphere, Astrophys. J., 4(539), 147150.CrossRefGoogle Scholar
Bjoraker, G., Achterberg, R. K. and Jennings, D. E. (2010), Cassini/CIRS observations of water vapor in Saturn ’s stratosphere, EPSC Abstracts, 5, 9007.Google Scholar
Burns, J. A., Showalter, M. R., Cuzzi, J. N. et al. (1983), Saturn’s electrostatic discharges: Could lightning be the cause?, Icarus, 54(2), 280295, doi:10.1016/0019–1035(83)90198–7.Google Scholar
Burton, M. E., Dougherty, M. K. and Russell, C. T. (2010), Saturn’s internal planetary magnetic field, Geophys. Res. Lett., 37(24), doi:10.1029/2010GL045148.Google Scholar
Capone, L. A., Whitten, R. C., Prasad, S. S. et al. (1977), The ionospheres of Saturn, Uranus, and Neptune, Astrophys. J., 215, 977983.Google Scholar
Cassidy, T. A. and Johnson, R. E. (2010), Collisional spreading of Enceladus’ neutral cloud, Icarus, 209(2), 696703, doi:10.1016/j.icarus.2010.04.010.Google Scholar
Cavalié, T., Hue, V., Hartogh, P. et al. (2014), Is Enceladus Saturn’s source of water?, EPSC Abstracts, 9, 411.Google Scholar
Chen, R. H. (1983), Saturn’s ionosphere: A corona of ice particles?, Moon Planets, 28, 3741.Google Scholar
Connerney, J. (2013), Saturn’s ring rain, Nature, 496(7444), 178179.Google Scholar
Connerney, J. and Waite, J. (1984), New model of Saturn’s ionosphere with an influx of water from the rings, Nature, 312, 136138.Google Scholar
Connerney, J. E. P. (1986), Magnetic connection for Saturn’s rings and atmosphere, Geophys. Res. Lett., 13(8), 773776.Google Scholar
Crary, F. J. (2014), Saturn’s other ring current, EPSC Abstracts, 111, 140.Google Scholar
Cravens, T. E. (1987), Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter, J. Geophys. Res., 92(5), 11,08311,100.Google Scholar
Cravens, T. E., Vann, J., Clark, J. et al. (2004), The ionosphere of Titan: An updated theoretical model, Adv. Sp. Res., 33(2), 212215, doi:10.1016/j.asr.2003.02.012.Google Scholar
Cuzzi, J. N., Burns, J. A., Charnoz, S. et al. (2010), An evolving view of Saturn’s dynamic rings., Science, 327(5972), 1470–5, doi:10.1126/science.1179118.Google Scholar
Dalgarno, A. and Lejeune, G. (1971), The absorption of electrons in atomic oxygen, Planet. Space Sci., 19, 16531667.Google Scholar
Drossart, P., Maillard, J.-P., Caldwell, J. et al. (1989), Detection of H3+ on Jupiter, Nature, 340, 539541.Google Scholar
Dyudina, U., Ingersoll, A., Ewald, S. et al. (2007), Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006, Icarus, 190(2), 545555, doi:10.1016/j.icarus.2007.03.035.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37(9), 15, doi:10.1029/2010GL043188.Google Scholar
Evans, D. R., Warwick, J. W., Pearce, J. B. et al. (1981), Impulsive radio discharges near Saturn, Nature, 292(August), 716718.Google Scholar
Farrell, W. M., Kaiser, M. L. and Desch, M. D. (1999), A model of the lightning discharge at Jupiter, Geophys. Res. Lett., 26(16), 26012604.Google Scholar
Feuchtgruber, H., Lellouch, E. and De Graauw, T. (1997), External supply of oxygen to the atmospheres of the giant planets, Nature, 389(September), 159162.Google Scholar
Fischer, G., Desch, M., Zarka, P. et al. (2006), Saturn lightning recorded by Cassini/RPWS in 2004, Icarus, 183(1), 135152, doi:10.1016/j.icarus.2006.02.010.Google Scholar
Fischer, G., Gurnett, D. A., Kurth, W. S. et al. (2008), Atmospheric electricity at Saturn, Space Sci. Rev., 137(14), 271285, doi:10.1007/s11214-008–9370-z.Google Scholar
Fischer, G., Gurnett, D. A., Zarka, P. et al. (2011a), Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning, J. Geophys. Res., 116(A4), A04315, doi:10.1029/2010JA016187.Google Scholar
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011b), A giant thunderstorm on Saturn., Nature, 475(7354), 7577, doi:10.1038/nature10205.Google Scholar
Fjeldbo, G., Kliore, A. and Eshleman, V. (1971), The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments, Astron. J., 76, 123.Google Scholar
Fjeldbo, G., Kliore, A., Seidel, B. et al. (1975), The Pioneer 10 radio occultation measurements of the ionosphere of Jupiter, Astron. Astrophys., 39, 9196.Google Scholar
Fleshman, B. L., Delamere, P. A., Bagenal, F. et al. (2012), The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds, J. Geophys. Res., 117(E5), E05007, doi:10.1029/2011JE003996.Google Scholar
Fox, J. L. (2004), Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays, J. Geophys. Res. Sp. Phys., 109(A11), 118, doi:10.1029/2004JA010380.Google Scholar
Fox, J. L. (2007), Near-terminator Venus ionosphere: How Chapman-esque?, J. Geophys. Res., 112(E4), E04S02, doi:10.1029/2006JE002736.Google Scholar
Fox, J. L. and Yeager, K. E. (2006), Morphology of the near-terminator Martian ionosphere: A comparison of models and data, J. Geophys. Res., 111(A10), A10309, doi:10.1029/2006JA011697.CrossRefGoogle Scholar
Frey, M. A. (1997), The Polar Wind of Saturn, University of Michigan Press, Ann Arbor, MI.Google Scholar
Galand, M., Moore, L., Charnay, B. et al. (2009), Solar primary and secondary ionization at Saturn, J. Geophys. Res., 114(A6), A06313, doi:10.1029/2008JA013981.Google Scholar
Galand, M., Moore, L., Mueller-Wodarg, I. et al. (2011), Response of Saturn’s auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity, J. Geophys. Res., 116(A9), A09306, doi:10.1029/2010JA016412.Google Scholar
Galand, M., Yelle, R. V., Coates, A. J. et al. (2006), Electron temperature of Titan’s sunlit ionosphere, Geophys. Res. Lett., 33(21), L21101, doi:10.1029/2006GL027488.Google Scholar
Glocer, A., Gombosi, T. I., Toth, G. et al. (2007), Polar wind outflow model: Saturn results, J. Geophys. Res., 112(A1), A01304, doi:10.1029/2006JA011755.CrossRefGoogle Scholar
Gustin, J., Gérard, J.-C., Pryor, W. et al. (2009), Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra, Icarus, 200(1), 176187, doi:10.1016/j.icarus.2008.11.013.Google Scholar
Hallett, J. T., Shemansky, D. E. and Liu, X. (2005a), A rotational level hydrogen physical chemistry model for general astrophysical application, Astrophys. J., 624(1), 448461, doi:10.1086/428935.Google Scholar
Hallett, J. T., Shemansky, D. E. and Liu, X. (2005b), Fine-structure physical chemistry modeling of Uranus H2 X quadrupole emission, Geophys. Res. Lett., 32(2), L02204, doi:10.1029/2004GL021327.Google Scholar
Hartogh, P., Lellouch, E., Moreno, R. et al. (2011), Direct detection of the Enceladus water torus with Herschel, Astron. Astrophys., 532, L2, doi:10.1051/0004–6361/201117377.Google Scholar
Hinson, D., Twicken, J. and Karayel, E. (1998), Jupiter’s ionosphere: New results from Voyager 2 radio occultation measurements, J. Geophys. Res., 103(A5), 95059520.Google Scholar
Huestis, D. L. (2008), Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres, Planet. Space Sci., 56(13), 17331743, doi:10.1016/j.pss.2008.07.012.Google Scholar
Ichihara, A., Iwamoto, O. and Janev, R. (2000), Cross sections for the reaction H+ + H2 (v=0–14) –> H + H2+ at low collision energies, J. Phys. B At., 33, 47474758.Google Scholar
Ip, W.-H. (1983), On plasma transport in the vicinity of the rings of Saturn: A siphon flow mechanism, J. Geophys. Res., 88(A2), 819, doi:10.1029/JA088iA02p00819.Google Scholar
Jurac, S. and Richardson, J. D. (2007), Neutral cloud interaction with Saturn’s main rings, Geophys. Res. Lett., 34(8), L08102, doi:10.1029/2007GL029567.CrossRefGoogle Scholar
Kaiser, M. L., Desch, M. D. and Connerney, J. E. P. (1984), Saturn’s ionosphere: Inferred electron densities, J. Geophys. Res., 89(A4), 2371, doi:10.1029/JA089iA04p02371.Google Scholar
Kaiser, M. L., Zarka, P., Desch, M. D. et al. (1991), Restrictions on the characteristics of Neptunian lightning, J. Geophys. Res., 96, 19,04319,047, doi:10.1029/91JA01599.Google Scholar
Karayel, E. and Hinson, D. (1997), Sub-fresnel-scale vertical resolution in atmospheric profiles from radio occultation, Radio Sci., 32(2), 411423.Google Scholar
Kelley, M. C. (2009), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed., Academic Press, San Diego, CA.Google Scholar
Kim, J., Nagy, A. F., Cravens, T. E. et al. (1989), Solar cycle variations of the electron densities near the ionospheric peak of Venus, J. Geophys. Res., 94(89), 11,99712,002, doi:10.1029/JA094iA09p11997.Google Scholar
Kim, Y. and Fox, J. (1994), The chemistry of hydrocarbon ions in the Jovian ionosphere, Icarus, 112, 310324.Google Scholar
Kim, Y. H., Fox, J. L., Black, J. H. et al. (2014), Hydrocarbon ions in the lower ionosphere of Saturn, J. Geophys. Res. Sp. Phys., 119, 112, doi:10.1002/2013JA019022.Google Scholar
Kliore, A. J., Anderson, J. D., Armstrong, J. W. et al. (2004), Cassini radio science, Space Sci. Rev., 115, 170.Google Scholar
Kliore, A. J., Nagy, A., Asmar, S. et al. (2014), The ionosphere of Saturn as observed by the Cassini radio science system, Geophys. Res. Lett., 41(16), 15, doi:10.1002/2014GL060512.Received.Google Scholar
Kliore, A. J., Nagy, A. F., Cravens, T. E. et al. (2011), Unusual electron density profiles observed by Cassini radio occultations in Titan’s ionosphere: Effects of enhanced magnetospheric electron precipitation?, J. Geophys. Res., 116(A11), A11318, doi:10.1029/2011JA016694.Google Scholar
Kliore, A. J., Nagy, A. F., Marouf, E. A. et al. (2009), Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations, J. Geophys. Res., 114(A4), A04315, doi:10.1029/2008JA013900.CrossRefGoogle Scholar
Kliore, A. J., Patel, I. R., Lindal, G. F. et al. (1980), Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation, J. Geophys. Res., 85(A11), 58575870.Google Scholar
Koskinen, T. T., Sandel, B. R., Yelle, R. V. et al. (2013), The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations, Icarus, 226(2), 13181330, doi:10.1016/j.icarus.2013.07.037.Google Scholar
Krstić, P. (2002), Inelastic processes from vibrationally excited states in slow H+ + H2 and H + H2+ collisions: Excitations and charge transfer, Phys. Rev. A, 66(4), 042717, doi:10.1103/PhysRevA.66.042717.Google Scholar
Lam, H. A., Achilleos, N., Miller, S. et al. (1997), A baseline spectroscopic study of the infrared auroras of Jupiter, Icarus, 393, 379393.CrossRefGoogle Scholar
Lindal, G. (1992), The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2, Astron. J., 103(3), 967982.Google Scholar
Lindal, G. F., Lyons, J. R., Sweetnam, D. N. et al. (1987), The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92(A13), 14987, doi:10.1029/JA092iA13p14987.Google Scholar
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements, Astron. J., 90(6), 11361146.Google Scholar
Lipa, B. and Tyler, G. L. (1979), Statistical and computational uncertainties in atmospheric profiles from radio occultation – Mariner 10 at Venus, Icarus, 208, 192208, doi:10.1016/0019–1035(79)90163–5.Google Scholar
Liu, C.-M. and Ip, W.-H. (2014), A new pathway of Saturnian ring-ionosphere coupling via charged nanograins, Astrophys. J., 786(1), 34, doi:10.1088/0004-637X/786/1/34.Google Scholar
Luhmann, J. G., Johnson, R. E., Tokar, R. L. et al. (2006), A model of the ionosphere of Saturn’s rings and its implications, Icarus, 181(2), 465474, doi:10.1016/j.icarus.2005.11.022.Google Scholar
Lummerzheim, D., Rees, M. H. and Anderson, H. R. (1989), Angular dependent transport of auroral electrons in the upper atmosphere, Planet. Space Sci., 37(1), 109129.Google Scholar
Lyons, J. R. (1995), Metal ions in the atmosphere of Neptune, Science (80-.)., 267(5198), 648651.Google Scholar
Lystrup, M. B., Miller, S., Dello Russo, N. et al. (2008), First vertical ion density profile in Jupiter’s auroral atmosphere: Direct observations using the Keck II telescope, Astrophys. J., 677(1), 790797, doi:10.1086/529509.CrossRefGoogle Scholar
Majeed, T. and McConnell, J. (1991), The upper ionospheres of Jupiter and Saturn, Planet. Space Sci., 39(12), 17151732.Google Scholar
Majeed, T. and McConnell, J. (1996), Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model, J. Geophys. Res., 101, 75897598.Google Scholar
Majeed, T., McConnell, J. and Yelle, R. (1991), Vibrationally excited H2 in the outer planets thermosphere: Fluorescence in the Lyman and Werner bands, Planet. Space Sci., 39(11), 15911606.Google Scholar
Majeed, T., Waite, J., Bougher, S. et al. (2004), The ionospheres–thermospheres of the giant planets, Adv. Sp. Res., 33(2), 197211, doi:10.1016/j.asr.2003.05.009.Google Scholar
Matcheva, K. I. and Barrow, D. J. (2012), Small-scale variability in Saturn’s lower ionosphere, Icarus, 221(2), 525543, doi:10.1016/j.icarus.2012.08.022.Google Scholar
Matcheva, K. I. and Strobel, D. F. (2001), Interaction of gravity waves with ionospheric plasma: Implications for Jupiter’s ionosphere, Icarus, 152, 347365, doi:10.1006/icar.Google Scholar
Matta, M., Galand, M., Moore, L. et al. (2014), Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations, Icarus, 227, 7888, doi:10.1016/j.icarus.2013.09.006.CrossRefGoogle Scholar
McConnell, J. C., Holberg, J. B., Smith, G. R. et al. (1982), A new look at the ionosphere of Jupiter in light of the UVS occultation results, Planet. Space Sci., 30(2), 151167.Google Scholar
McElroy, M. (1973), The ionospheres of the major planets, Space Sci. Rev., 14, 460473.Google Scholar
Melin, H., Miller, S., Stallard, T. et al. (2007), Variability in the H3+ emission of Saturn: Consequences for ionisation rates and temperature, Icarus, 186(1), 234241, doi:10.1016/j.icarus.2006.08.014.Google Scholar
Melin, H., Stallard, T. S., Miller, S. et al. (2013), Post-equinoctial observations of the ionosphere of Uranus, Icarus, 223(2), 741748, doi:10.1016/j.icarus.2013.01.012.Google Scholar
Melin, H., Stallard, T., Miller, S. et al. (2011), Simultaneous Cassini VIMS and UVIS observations of Saturn’s southern aurora: Comparing emissions from H, H2 and H3+ at a high spatial resolution, Geophys. Res. Lett., 38(15), doi:10.1029/2011GL048457.Google Scholar
Mendillo, M., Moore, L., Clarke, J. et al. (2005), Effects of ring shadowing on the detection of electrostatic discharges at Saturn, Geophys. Res. Lett., 32, 37, doi:10.1029/2004GL021934.Google Scholar
Miller, S., Achilleos, N., Ballester, G. E. et al. (2000), The role of H3+ in planetary atmospheres, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 358, 24852502.Google Scholar
Miller, S., Achilleos, N., Ballester, G. E. et al. (1997), Mid-to-Low Latitude H3+ Emission from Jupiter, Icarus, 130, 5767.Google Scholar
Miller, S., Stallard, T., Smith, C. et al. (2006), H3+: The driver of giant planet atmospheres, Philos. Trans. R. Soc. A, 364(1848), 31213135, doi:10.1098/rsta.2006.1877.Google Scholar
Moore, L., Fischer, G., Müller-Wodarg, I. et al. (2012), Diurnal variation of electron density in Saturn’s ionosphere: Model comparisons with Saturn Electrostatic Discharge (SED) observations, Icarus, 221(2), 508516, doi:10.1016/j.icarus.2012.08.010.Google Scholar
Moore, L., Galand, M., Müller-Wodarg, I. et al. (2008), Plasma temperatures in Saturn’s ionosphere, J. Geophys. Res., 113(A10), A10306, doi:10.1029/2008JA013373.Google Scholar
Moore, L., Galand, M., Mueller-Wodarg, I. et al. (2009), Response of Saturn’s ionosphere to solar radiation: Testing parameterizations for thermal electron heating and secondary ionization processes, Planet. Space Sci., 57(1415), 16991705, doi:10.1016/j.pss.2009.05.001.CrossRefGoogle Scholar
Moore, L. and Mendillo, M. (2007), Are plasma depletions in Saturn’s ionosphere a signature of time-dependent water input?, Geophys. Res. Lett., 34, 15, doi:10.1029/2007GL029381.Google Scholar
Moore, L. E., Mendillo, M., Müller-Wodarg, I. C. F. et al. (2004), Modeling of global variations and ring shadowing in Saturn’s ionosphere, Icarus, 172(2), 503520, doi:10.1016/j.icarus.2004.07.007.Google Scholar
Moore, L., Mueller-Wodarg, I., Galand, M. et al. (2010), Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons, J. Geophys. Res., 115(A11), A11317, doi:10.1029/2010JA015692.Google Scholar
Moore, L., Nagy, A. F., Kliore, A. J. et al. (2006), Cassini radio occultations of Saturn’s ionosphere: Model comparisons using a constant water flux, Geophys. Res. Lett., 33(22), L22202, doi:10.1029/2006GL027375.Google Scholar
Moore, L., O’Donoghue, J., Müller-Wodarg, I. et al. (2015), Saturn ring rain: Model estimates of water influx into Saturn’s atmosphere, Icarus, 245, 355366, doi:10.1016/j.icarus.2014.08.041.Google Scholar
Moses, J. and Bass, S. (2000), The effects of external material on the chemistry and structure of Saturn’s ionosphere, J. Geophys. Res., 105(1999), 70137052.Google Scholar
Moses, J., Bézard, B., Lellouch, E. et al. (2000), Photochemistry of Saturn’s atmosphere II: Effects of an influx of external oxygen, Icarus, 145(1), 166202, doi:10.1006/icar.1999.6320.Google Scholar
Müller-Wodarg, I. C. F., Mendillo, M., Yelle, R. et al. (2006), A global circulation model of Saturn’s thermosphere, Icarus, 180(1), 147160, doi:10.1016/j.icarus.2005.09.002.Google Scholar
Müller-Wodarg, I. C. F., Moore, L., Galand, M. et al. (2012), Magnetosphere–atmosphere coupling at Saturn: 1 – Response of thermosphere and ionosphere to steady state polar forcing, Icarus, 221(2), 481494, doi:10.1016/j.icarus.2012.08.034.Google Scholar
Nagy, A. F. and Cravens, T. E. (2002), Solar system ionospheres, in Atmospheres in the Solar System: Comparative Aeronomy, edited by Mendillo, M., Nagy, A. and Waite, J. H., pp. 3954, American Geophysical Union, Washington, DC.Google Scholar
Nagy, A. F., Kliore, A. J., Marouf, E. et al. (2006), First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft, J. Geophys. Res., 111(A6), A06310, doi:10.1029/2005JA011519.CrossRefGoogle Scholar
Nagy, A. F., Kliore, A. J., Mendillo, M. et al. (2009), Upper atmosphere and ionosphere of Saturn, in Saturn from Cassini-Huygens, edited by Dougherty, M. K., Esposito, L. W. and Krimigis, S. M., pp. 181201, Springer Netherlands, Dordrecht.Google Scholar
Northrop, G. and Hill, J. R. (1982), Stability of negatively charged dust grains in Saturn’s ring plane, J. Geophys. Res., 87(A8), 60456051.Google Scholar
Northrop, T. G. and Connerney, J. E. P. (1987), A micrometeorite erosion model and the age of Saturn’s rings, Icarus, 70, 124137.Google Scholar
Northrop, T. G. and Hill, J. R. (1983), The inner edge of Saturn’s B ring, J. Geophys. Res., 88(A8), 61026108.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2014), Conjugate observations of Saturn’s northern and southern aurorae, Icarus, 229, 214220, doi:10.1016/j.icarus.2013.11.009.Google Scholar
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low-latitude ionosphere by ring “rain,” Nature, 496(7444), 193195, doi:10.1038/nature12049.Google Scholar
Perry, J., Kim, Y., Fox, J. and Porter, H. (1999), Chemistry of the Jovian auroralIionosphere, J. Geophys. Res., 104(E7), 16,54116,565.Google Scholar
Porco, C. C., Baker, E., Barbara, J. et al. (2005), Cassini imaging science: Initial results on Saturn’s atmosphere, Science (80-.)., 307(February), 12431247.Google Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C. et al. (2006), Cassini observes the active south pole of Enceladus, Science (80-.)., 311(5766), 13931401, doi:10.1126/science.1123013.Google Scholar
Prangé, R., Fouchet, T., Courtin, R. et al. (2006), Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra, Icarus, 180(2), 379392, doi:10.1016/j.icarus.2005.11.005.Google Scholar
Schlesier, A. C. and Buonsanto, M. J. (1999), The Millstone Hill ionospheric model and its application to the May 26–27, 1990, ionospheric storm, J. Geophys. Res., 104(A10), 22,45322,468.Google Scholar
Schunk, R. W. and Nagy, A. F. (2009), Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
Shimizu, M. (1980), Strong interaction between the ring system and the ionosphere of Saturn, Moon Planets, 22, 521522.Google Scholar
Stallard, T., Melin, H., Cowley, S. W. H. et al. (2010), Location and magnetospheric mapping of Saturn’s mid-latitude infrared auroral oval, Astrophys. J., 722(1), L85L89, doi:10.1088/2041–8205/722/1/L85.Google Scholar
Stallard, T. S., Melin, H., Miller, S. et al. (2012a), Peak emission altitude of Saturn’s H3+ aurora, Geophys. Res. Lett., 39(15), 15, doi:10.1029/2012GL052806.Google Scholar
Stallard, T. S., Melin, H., Miller, S. et al. (2012b), Temperature changes and energy inputs in giant planet atmospheres: what we are learning from H3+, Philos. Trans. A. Math. Phys. Eng. Sci., 370(1978), 5213–5124, doi:10.1098/rsta.2012.0028.Google Scholar
Stallard, T., Miller, S., Melin, H. et al. (2008), Jovian-like aurorae on Saturn, Nature, 453(7198), 10831085, doi:10.1038/nature07077.Google Scholar
Tao, C., Badman, S. V. and Fujimoto, M. (2011), UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison, Icarus, 213(2), 581592, doi:10.1016/j.icarus.2011.04.001.Google Scholar
Theard, L. P. and Huntress, W. T. (1974), Ion-molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium, J. Chem. Phys., 60, 28402848, doi:10.1063/1.1681453.Google Scholar
Tokar, R. L., Johnson, R. E., Thomsen, M. F. et al. (2005), Cassini observations of the thermal plasma in the vicinity of Saturn’s main rings and the F and G rings, Geophys. Res. Lett., 32(14), 15, doi:10.1029/2005GL022690.Google Scholar
Tseng, W.-L., Ip, W.-H., Johnson, R. E. et al. (2010), The structure and time variability of the ring atmosphere and ionosphere, Icarus, 206(2), 382389, doi:10.1016/j.icarus.2009.05.019.Google Scholar
Vuitton, V., Dutuit, O., Smith, M. et al. (2015), Chemistry of Titan’s atmosphere, in Titan: Interior, Surface, Atmosphere, and Space Environment, edited by Mueller-Wodarg, I., Griffith, C. A., Lellouch, E. and Cravens, T. E., pp. 224284, Cambridge University Press, Cambridge.Google Scholar
Waite, J. H. (1981), The Ionosphere of Saturn, University of Michigan Press, Ann Arbor, MI.Google Scholar
Waite, J. H., Cravens, T. E., Kozyra, J. et al. (1983), Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere, J. Geophys. Res., 88(3), 61436163.Google Scholar
Waite, J. H., Cravens, T. E., Ip, W. et al. (2005), Oxygen ions observed near Saturn’s A ring, Science (80-.)., 307(February), 12601262.Google Scholar
Waite, J. H., Lewis, W. S., Gladstone, G. R. et al. (1997), Outer planet ionospheres: A review of recent research and a look toward the future, Adv. Sp. Res., 20(2), 243252.Google Scholar
Waite, J. H., Young, D. T., Westlake, J. H. et al. (2010), High-altitude production of Titan’s aerosols, in Titan from Cassini–Huygens, edited by Brown, J. H., Lebreton, R.H. and Waite, J.-P., pp. 201214, Springer Netherlands, Dordrecht.Google Scholar
Warwick, J. W., Evans, D. R., Romig, J. H. et al. (1982), Planetary radio astronomy observations from Voyager 2 near Saturn, Science, 215(4532), 582587.CrossRefGoogle ScholarPubMed
Warwick, J. W., Pearce, J. B., Evans, D. R. et al. (1981), Planetary radio astronomy observations from Voyager 1 near Saturn, Science, 212(4491), 239243, doi:10.1126/science.212.4491.239.Google Scholar
Withers, P., Moore, L., Cahoy, K. et al. (2014), How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties, Planet. Space Sci., 101(July 2013), 7788.Google Scholar
Yelle, R. V. and Miller, S. (2004), Jupiter’s thermosphere and ionosphere, in Jupiter: The Planet, Satellites and Magnetosphere, edited by Bagenal, F., Dowling, T. E. and McKinnon, W. B., pp. 185218, Cambridge University Press, Cambridge.Google Scholar
Zarka, P. (1985a), Directivity of Saturn electrostatic discharges and ionospheric implications, Icarus, 61, 508520.Google Scholar
Zarka, P. (1985b), On detection of radio bursts associated with Jovian and Saturnian lightning, Astron. Astrophys., 146(L), 1518.Google Scholar
Zarka, P., Cecconi, B., Denis, L. et al. (2006), Physical properties and detection of Saturn’s lightning radio bursts, in Planetary Radio Emissions VI, edited by Rucker, H. O., Kurth, W. S. and Mann, G., pp. 111122, Austrian Academy of Sciences Press, Vienna.Google Scholar
Zarka, P., Farrell, W., Fischer, G. et al. (2008), Ground-based and space-based radio observations of planetary lightning, Space Sci. Rev., 137(1–4), 257269, doi:10.1007/s11214-008–9366-8.Google Scholar
Zarka, P. and Pedersen, B. M. (1983), Statistical study of Saturn electrostatic discharges, J. Geophys. Res., 88(A11), 90079018.Google Scholar
Zarka, P. and Pedersen, M. (1986), Radio detection of Uranian lightning by Voyager 2, Nature, 323, 605608.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×