Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T16:57:33.480Z Has data issue: false hasContentIssue false

13 - Climatic Impacts on Salt Marsh Vegetation

from Part III - Marsh Response to Stress

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

The salt marsh response to a changing climate may be more complex than that of either terrestrial or marine ecosystems because salt marshes exist at the interface of land and sea and both bring changes to the marsh. Climate change may exacerbate anthropogenic-related stresses that salt marsh plants are already experiencing, limiting their resilience (Keddy 2011). In this chapter we discuss major climate change impacts likely to affect salt marshes including temperature, sea level rise (SLR), salinity, CO2, freshwater flow, sediment, and nutrients, and consider how salt marsh plants respond to these impacts and potential interactions of these impacts. Specifically, we explore changes in plant productivity and decomposition rates, aboveground and belowground biomass, and stem density as they are central to understanding marsh responses on a larger scale, with implications for species composition, elevation change, nutrient cycling, carbon sequestration, food webs, and ultimately marsh survival. Although this chapter is focused on salt marshes, examples from tidal fresh and brackish marshes are also included to a limited extent where relevant.

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 337 - 366
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, M., Swenson, E. M., Adamowicz, S. C. and Mendelssohn, I. A. 2008. Salt marsh dieback: an overview of recent events in the US. Estuarine, Coastal and Shelf Science, 80:111.CrossRefGoogle Scholar
Anisfeld, S. C., and Hill, T. D. 2011. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries and Coasts, doi:10.1007/s12237-011-9440-4.CrossRefGoogle Scholar
Ball, A. S., and Drake, B. G. 1998. Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. Soil Biology and Biochemistry, 30:12031205.CrossRefGoogle Scholar
Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C., Carruthers, T. J. B., and Allison, M. 2017. Relationships between salinity and short-term soil carbon accumulations rates from marsh types across a landscape in the Mississippi River Delta. Wetlands, 37:313324.Google Scholar
Bowes, G. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology & Plant Molecular Biology, 44:309332.Google Scholar
Broome, S. W., Mendelssohn, I. A., and McKee, K. L. 1995. Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi Gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands, 15(1):2030.Google Scholar
Brown, C. E., Pezeshki, S. R., and DeLaune, R. D. 2006. The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environmental and Experimental Botany, 58:140148.CrossRefGoogle Scholar
Carey, J. C., Moran, S. B., Kelly, R. P., Kolker, A. S., and Fulweiler, R. W. 2017. The declining role of organic matter in New England salt marshes. Estuaries and Coasts, 40:626639.Google Scholar
Carniello, L., Defina, A. and D’Alpaos, L. 2009. Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. Journal of Geophysical Research, 114:F04002.CrossRefGoogle Scholar
Centritto, M. 2002. The effects of elevated [CO2] and water availability on growth and physiology of peach (Prunus persica) plants. Plant Biosystems, 136:177188.CrossRefGoogle Scholar
Centritto, M., Lucas, M. E., and Jarvis, P. G. 2002. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiology, 22:699706.CrossRefGoogle ScholarPubMed
Charles, H., and Dukes, J. S. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecological Applications, 19(7):17581773.Google Scholar
Cherry, J. A., McKee, K. L., and Grace, M. B. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology, 97:6777.CrossRefGoogle Scholar
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D. 2007. Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22:357365.CrossRefGoogle ScholarPubMed
Coldren, G. A., Barreto, C. R., Wykoff, D. D., Morrissey, E. M., Langley, J. A., Feller, I. C., and Chapman, S. K. 2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology, 97(11):31673175.Google Scholar
Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography, 52(3):12201230.CrossRefGoogle Scholar
Criddle, R. S., Hansen, L. D., Breidenbach, R. W. Ward, M. R., and Huffaker, R. C.. 1989. Effects of NaCl on metabolic heat evolution rates by barley roots. Plant Physiology 90(1):5358.CrossRefGoogle ScholarPubMed
Cronk, J. K., and Fennessy, M. S.. 2001. Wetland Plants: Biology and Ecology. CRC Press, Boca Raton, Florida.Google Scholar
Crosby, S. C., Angermeyer, A., Adler, J. M., Bertness, M. D., Deegan, L. A., Sibinga, N. and Leslie, H. M. 2017. Spartina alterniflora biomass allocation and temperature: implications for salt marsh persistence with sea-level rise. Estuaries and Coasts, 40:213223.Google Scholar
Curtis, P.S., Balduman, L. M., Drake, B. G., and Whigman, D. F. 1990. Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine marsh communities. Ecology, 71(5):20012006.CrossRefGoogle Scholar
Darby, F. A., and Turner, R. E. 2008. Effects of eutrophication on salt marsh root and rhizome biomass accumulation. Marine Ecology Progress Series, 363:6370.CrossRefGoogle Scholar
Davidson, E. A., and Janssens, I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440:165173.CrossRefGoogle ScholarPubMed
Davis, J., Currin, C., and Morris, J. T. 2017. Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes. Estuaries and Coasts, 40:16771687.Google Scholar
Day, J. W., Christian, R. R., Boesch, D. M., Yáñez-Arancibia, A., Morris, J., Twilley, R. R., Naylor, L. et al. 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts, 31:477491.CrossRefGoogle Scholar
Day, J., Kemp, P., Reed, D., Cahoon, D., Boumans, R., Suhayda, J., and Gambrell, R. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecological Engineering, 37:229240.Google Scholar
Deegan, L., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S., and Wollheim, W. M. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490:388392.Google Scholar
DeLaune, R. D., Jugsujinda, A., Peterson, G., and Patrick, W. 2003. Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. Estuarine, Coastal and Shelf Science, 58:653662.CrossRefGoogle Scholar
DeLaune, R. D., and Pezeshki, S.R. 1994. The influence of subsidence and saltwater intrusion on coastal marsh stability: Louisiana Gulf Coast, U.S.A. Journal of Coastal Research, 12:7789.Google Scholar
DeLaune, R. D., Pezeshki, S., and Jugsujinda, A. 2005. Impact of Mississippi River freshwater reintroduction on Spartina patens marshes: responses to nutrient input and lowering of salinity. Wetlands, 25:155161.CrossRefGoogle Scholar
De Leeuw, J., Olff, H., and Bakker, J. P. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquatic Botany, 36:139151.Google Scholar
Donnelly, J. P., and Bertness, M. D. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the USA 98:1421814223.CrossRefGoogle ScholarPubMed
Drake, B. G. 1992. A field-study of the effects of elevated CO2 on ecosystem processes in a Chesapeake Bay wetland. Australian Journal of Botany, 40:579595.Google Scholar
Dunn, R., Thomas, S. M., Keys, A. J., and Long, S. P. 1987. A comparison of the growth of C4 grass Spartina anglica with the C3 grass Lolium perenne at different temperatures. Journal of Experimental Botany, 38(188):433441.Google Scholar
Erickson, J. E., Megonigal, J. P., Peresta, G., and Drake, B. G. 2007. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology, 13:202215.CrossRefGoogle Scholar
Fagherazzi, S., Carniello, L. D’Alpaos, L., and Defina, A. 2006. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences of the USA, 103:83378341.Google Scholar
Farquhar, G. D., von Caemmerer, S., and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149:7890.Google Scholar
French, J. 2006. Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology, 235:119136.CrossRefGoogle Scholar
Gedan, K. B., Altieri, A. H., and Bertness, M. D. 2011. Uncertain future of New England salt marshes. Marine Ecology Progress Series, 434:229237.Google Scholar
Gedan, K. B., and Bertness, M.D. 2009. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecology Letters, 12:842848.CrossRefGoogle ScholarPubMed
Giosan, L., Syvitski, J., Constantinescu, S. D., and Day, J. 2014. Protect the world’s deltas. Nature, 516:3133.CrossRefGoogle ScholarPubMed
Giurgevich, J. R, and Dunn, E.L. 1979. Seasonal patterns of CO2 and water vapor exchange of the tall and short height forms of Spartina alterniflora Loisel in a Georgia salt marsh. Oecologia, 43:139156.CrossRefGoogle Scholar
Gray, A. J., and Mogg, R. J. 2001. Climate impacts on pioneer saltmarsh plants. Climate Research, 18:105112.CrossRefGoogle Scholar
Greenway, H., and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1):149190.CrossRefGoogle Scholar
Grime, J. P. 1988. The C-S-R model of primary plant strategies–origins, implications and tests. pp. 371393. In: Plant Evolutionary Biology, Jain, S. K. (ed.), Chapman & Hall, London.CrossRefGoogle Scholar
Hanson, A., Johnson, R., Wigand, C., Oczkowski, A., Davey, E., and Markham, E. 2016. Responses of Spartina alterniflora to multiple stressors: changing precipitation patterns, accelerated sea level rise, and nutrient enrichment. Estuaries and Coasts, 39:13761385.CrossRefGoogle Scholar
Henry, M. K., and Twilley, R. R. 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research, 29:12731283.Google Scholar
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10):206.CrossRefGoogle Scholar
Howard, R. J., and Mendelssohn, I. A. 1999. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance. American Journal of Botany, 86(6):785794.CrossRefGoogle ScholarPubMed
Hughes, A. L. H., Wilson, A. M., and Morris, J. T. 2012. Hydrologic variability in a salt marsh: assessing the links between drought and acute marsh dieback. Estuarine, Coastal and Shelf Science, 111:95106.Google Scholar
Idso, K. E., and Idso, S. B. 1994. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agricultural and Forest Meteorology, 69:153203.Google Scholar
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K. and Meyer, L.A. (eds.)]. IPCC, Geneva, Switzerland.Google Scholar
Jacob, J., Greitner, C. and Drake, B. G. 1995. Acclimation of photosynthesis in relation to Rubisco and non-structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi grown at elevated CO2 in the field. Plant, Cell and Environment, 18:875884.Google Scholar
Janousek, C. N., Buffington, K. J., Thorne, K. M., Guntenspergen, G. R., Takekawa, J. Y., and Dugger, B. D. 2016. Potential effects of sea-level rise on plant productivity: species-specific responses in northeast Pacific tidal marshes. Marine Ecology Progress Series, 548:111125.CrossRefGoogle Scholar
Johnson, D. S., Warren, R. S., Deegan, L. A., and Mozdzer, T. J. 2016. Saltmarsh plant responses to eutrophication. Ecological Applications, 26(8):26492661.CrossRefGoogle ScholarPubMed
Kearney, M. S., Grace, R. E., and Stevenson, J. C. 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review, 78:205220.CrossRefGoogle Scholar
Keddy, P. A. 1990. Competitive hierarchies and centrifugal organization in plant communities. pp. 265290. In: Perspectives on Plant Competition, Grace, J.B. and Tilman, D. (eds.), Academic Press, Inc., San Diego, USA.Google Scholar
Keddy, P.A. 2011. Wetland Ecology: Principles and Conservation. Vol. 2. Cambridge University Press, Cambridge, U.K.Google Scholar
Kirwan, M. L., and Guntenspergen, G. R. 2013. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100:764770.Google Scholar
Kirwan, M. L., Guntenspergen, G. R., D’Alpaos, A., Morris, J. T., Mudd, S. M., and Temmerman, S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37: L23401.CrossRefGoogle Scholar
Kirwan, M. L., Guntenspergen, G. R., and Langley, J. A. 2014. Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences, 11:48014808.Google Scholar
Kirwan, M. L., Guntenspergen, G. R., and Morris, J. T. 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology, 15:19821989.CrossRefGoogle Scholar
Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. and Megonigal, J. P. 2013. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences, 10:18691876.Google Scholar
Kirwan, M. L., and Megonigal, J. P. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504:5360.CrossRefGoogle ScholarPubMed
Kirwan, M. L., and Mudd, S. M. 2012. Response of salt-marsh carbon accumulation to climate change. Nature, 489:550553.Google Scholar
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., and Fagherazzi, S. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6:253260.CrossRefGoogle Scholar
Lamers, L., Govers, L., Jenssen, I., Geurts, J. Van der Welle, M., Van Katwijk, M., Van der Heide, T., Roelofs, J., and Smolders, A. 2013. Sulfide as a soil phytotoxin--a review. Frontiers in Plant Science, 4:14.Google Scholar
Langley, J. A., and Hungate, B. A. 2014. Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB Plants, 6:plu035. doi:10.1093/aobpla/plu035CrossRefGoogle Scholar
Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A., and Megonigal, J. P. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the USA, 106(15):61826186.Google Scholar
Langley, J. A., and Megonigal, J. P. 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature, 466:9699.Google Scholar
Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B., and Megonigal, J. P. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology, 19: 14951503.Google Scholar
Lee, S. -Y., Hamlet, A. F., and Grossman, E. E. 2016. Impacts of climate change on regulated streamflow, hydrologic extremes, hydropower production, and sediment discharge in the Skagit River Basin. Northwest Science, 90(1):2343.CrossRefGoogle Scholar
Lenssen, G. M., Lamers, J., Stroetenga, M., and Rozema, J. 1993. Interactive effects of atmospheric CO2 enrichment, salinity and flooding on growth of C3 (Elymus athericus) and C4 (Spartina anglica) salt marsh species. Vegetatio, 104/105:379388.CrossRefGoogle Scholar
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Korner, C. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in Ecology & Evolution, 26:236241.Google Scholar
Linthurst, R. A., and Seneca, E. D. 1981. Aeration, nitrogen and salinity as determinants of Spartina alterniflora Loisel. Growth response. Estuaries, 4(1):5363.Google Scholar
Lissner, J., Mendelssohn, I. A., Lorenzen, B., Brix, H., Mckee, K. L., and Miao, S. 2003. Interactive effects of redox intensity and phosphate availability on growth and nutrient relations of Cladium jamaicense (Cyperaceae), American Journal of Botany 90: 736748.Google Scholar
Maricle, B. R., Cobos, D. R., and Campbell, C. S. 2007. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses. Environmental and Experimental Botany, 60:458467.CrossRefGoogle Scholar
McKee, K. L., Mendelssohn, I. A., and Materne, M. D. 2004. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography, 13:6573.CrossRefGoogle Scholar
McKee, K., Rogers, K., and Saintilan, N. 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. Global Change Ecology and Wetlands, 1:6396.Google Scholar
Megonigal, J. P., Hines, M. E., and Visscher, P. T. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. pp. 317424. In: Biogeochemistry, Schlesinger, W.H. (ed.), Elsevier-Pergamon, Oxford, UK.Google Scholar
Mendelssohn, I. A., and McKee, K. L. 1992. Indicators of environmental stress in wetland plants. pp. 603624. In: Ecological Indicators, McKenzie, D. H., Hyatt, D. E., and MacDonald, V. J. (eds.), Elsevier Applied Science, New York, NY, USA.Google Scholar
Mendelssohn, I. A., McKee, K. L., Hester, M. W., Lin, Q., McGinnis, T., and Willis, J. 2006. Brown marsh task II.1: integrative approach to understanding the causes of salt marsh dieback – determination of salt marsh species tolerance limits to potential environmental stressors. Report submitted to the Louisiana Department of Natural Resources, Baton Rouge, LA.Google Scholar
Mendelssohn, I. A., and Morris, J. T. 2000. Ecophysiological controls on the growth of Spartina alterniflora. pp. 5980. In: Concepts and Controversies in Tidal Marsh Ecology. Weinstein, N. P.,, and Kreeger, D. A. (eds.). Kluwer Academic Publishers, New York.Google Scholar
Mendelssohn, I. A., Sorrell, B. K., Brix, H., Schierup, H. H., Lorenzen, B., and Maltby, E. 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquatic Botany, 64:381398.Google Scholar
Miller, W. D., Neubauer, S. C., and Anderson, I. C. 2001. Effects of sea level induced disturbance on high salt marsh metabolism. Estuaries, 24:357367.Google Scholar
Montagna, P. A., and Ruber, E. 1980. Decomposition of Spartina alterniflora in different seasons and habitats of a northern Massachusetts salt marsh, and a comparison with other Atlantic regions. Estuaries, 3:6164.Google Scholar
Morris, J. T. 1988. Pathways and controls of the carbon cycle in salt marshes. pp. 497510. In: The Ecology and Management of Wetlands, Volume 1, Ecology of Wetlands, Hook, D. D., (ed.), Croom Helm Ltd., Beckenham, UK.Google Scholar
Morris, J. T., Shaffer, G. P., and Nyman, J. A. 2013. Brinson Review: perspectives on the influence of nutrients on the sustainability of coastal wetlands. Wetlands, 33:975988.Google Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R. 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10):28692877.Google Scholar
Morrissey, E. M., Gillespie, J. L., Morina, J. C., and Franklin, R. B. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biology, 20:13511362.CrossRefGoogle ScholarPubMed
Mote, P. W., and Salathé, E. P. Jr 2010. Future climate in the Pacific Northwest. Climatic Change, 102:2950.Google Scholar
Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25:239250.CrossRefGoogle ScholarPubMed
Naidoo, G., McKee, K. L., and Mendelssohn, I. A. 1992. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). American Journal of Botany, 79(7):765770.Google Scholar
Nyman, J. A., and DeLaune, R. D. 1991. CO2 emission and soil Eh responses to different hydrological regimes in fresh, brackish and saline marsh soils. Limnology and Oceanography, 36:14061414.Google Scholar
Nyman, J. A., DeLaune, R. D., Roberts, H. H.,and Patrick, W. H. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series, 96:269279.Google Scholar
Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics, 19:147176.CrossRefGoogle Scholar
Osland, M. J., Enwright, N., Day, R. H., and Doyle, T. W. 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology, 19:14821494.CrossRefGoogle ScholarPubMed
Pennings, S. C., Grant, M. -B., and Bertness, M. D. 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93:159167.CrossRefGoogle Scholar
Poljakoff-Mayber, A. 1988. Ecological-physiological studies on the responses of higher plants to salinity and drought. Science Review of Arid Zone Research, 6:163183.Google Scholar
Polley, W. H., Johnson, H. B.,and Derner, J. D. 2003. Increasing CO2 from subambient to superambient concentrations alters species composition and increases above-ground biomass in a C3/C4 grassland. New Phytologist, 160:319327.Google Scholar
Pozo, J., and Colino, R. 1992. Decomposition processes of Spartina maritime in a salt marsh of the Basque Country. Hydrobiologia, 231:165175.CrossRefGoogle Scholar
Rahmstorf, A. 2007. A semi-empirical approach to projecting future sea-level rise. Science, 315:368370.Google Scholar
Rasse, D. P., Peresta, G., and Drake, B. G. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biology, 11:369377.CrossRefGoogle Scholar
Ratliff, K. M., Braswell, A. E., and Marani, M. 2015. Spatial response of coastal marshes to increased atmospheric CO2. Proceedings of the National Academy of Sciences of the USA, 112(51):1558015584.CrossRefGoogle ScholarPubMed
Reed, D. J. 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes, 20:3948.Google Scholar
Reich, P. B. 2009. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326:13991402.Google Scholar
Rozema, J., Dorel, F., Janissen, R., Lenssen, G. M., Broekman, R. A., Ar, W. J., and Drake, B. G. 1991. Effect of elevated CO2 on growth, photosynthesis and water relations of salt marsh grass species. Aquatic Botany, 39:4555.Google Scholar
Saintilan, N., Wilson, N., Rogers, K., Rajkaran, A., and Krauss, W. K. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20:147157.Google Scholar
Schile, L. M., Callaway, J. C., Suding, K. N., and Kelly, N. M. 2017. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands. Ecology and Evolution, 7:12761285.CrossRefGoogle ScholarPubMed
Sharpe, J. P., and Baldwin, H. A. 2012. Tidal marsh plant community response to sea-level rise: a mesocosm study. Aquatic Botany, 101:3440.CrossRefGoogle Scholar
Shaver, G. R., Canadell, J., Chapin, F. S., Gurevitch, J., Harte, J., Henry, G., Ineson, P., et al. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50:871882.Google Scholar
Shea, M. L. 1977. Photosynthesis and photorespiration in relation to phenotypic forms of Spartina alterniflora. PhD thesis, Yale University, New Haven, Connecticut.Google Scholar
Short, F. T., Kosten, S., Morgan, P. A., Malone, S., and Moore, G. E. 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, 135:317.Google Scholar
Smith, S. M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts and geomorphic change. Northeastern Naturalist, 16:183208.CrossRefGoogle Scholar
Stagg, C. L., Schoolmaster, D. R. Jr., Piazza, S. C., Snedden, G., Steyer, G. D., Fischenich, C. J., and McComas, R. W. 2017. A landscape-scale assessment of above- and belowground primary production in coastal wetlands: implications for climte change-induced community shifts. Estuaries and Coasts, 40:856879.Google Scholar
Stevenson, J. C., Kearney, M. S., and Pendleton, E. C. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology, 67:213235.Google Scholar
Stralberg, D., Brennan, M., Callaway, J. C., Wood, J. K., Schile, L. M., Jongsomjit, D., Kelly, M., Parker, V. T., and Crooks, S. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PLoS ONE, 6(11): e27388.Google Scholar
Sundareshwar, P. V., Morris, J. T., Koepfler, E. K., and Fornwalt, B. 2003. Phosphorus limitation of coastal ecosystem processes. Science, 299:563565.Google Scholar
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308:376380.Google Scholar
Teal, J. M., and Howes, B. L. 1996. Interannual variability of a salt-marsh ecosystem. Limnology and Oceanography, 41:802809.Google Scholar
Tobias, V. D., and Nyman, J. A. 2017. Leaf tissue indicators of flooding stress in the above- and belowground biomass of Spartina patens. Journal of Coastal Research, 33(2):309320.Google Scholar
Turner, R. E., Swenson, E. M., and Milan, C. S. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. pp. 583595. In: Concepts and Controversies in Tidal Marsh Ecology, Weinstein, M.P., and Kreeger, D.A. (eds.), Springer, Dordrecht, The Netherlands,.Google Scholar
Turner, R. E., Swenson, E. M., Milan, C. S., Lee, J. M. and Oswald, T. A. 2004. Below-ground biomass in healthy and impaired salt marshes. Ecological Research, 19:2935.Google Scholar
Turner, R. E. 2011. Beneath the salt marsh canopy: loss of soil strength with increasing nutrient loads. Estuaries and Coasts, 34:10841093.Google Scholar
Urban, O. 2003. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41:920.CrossRefGoogle Scholar
Valiela, I., Teal, J. M., Allen, S. D., Van Etten, R., Goehringer, D., and Volkmann, S. 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology, 89:2954.Google Scholar
van Dobben, H. F., and Slim, P. A. 2011. Past and future plant diversity of a coastal wetland driven by soil subsidence and climate change. Climatic Change, 110: 597618.Google Scholar
Visser, J. M., Duke-Sylvester, S. M., Carter, J., and Broussard, W. P. III 2013. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana. Journal of Coastal Research, 67(4):5159.Google Scholar
Wasson, K., Endris, R. C., Perry, D. C., Woolfolk, A., Beheshti, K., Rodriguez, M., et al. 2017. Eutrophication decreases salt marsh resilience through proliferation of algal mats. Biological Conservation 212:111.Google Scholar
Watson, E. B., Wigand, C., Davey, E. W., Andrews, H. M., Bishop, J., and Raposa, K. B. 2017. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts, 40:662681.Google Scholar
Wells, J. T., and Coleman, J. M. 1987. Wetland loss and the subdelta life cycle. Estuarine, Coastal and Shelf Science, 25:111125.Google Scholar
White, K. P., Langley, J. A., Cahoon, D. R., and Megonigal, J. P. 2012. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies. Estuaries and Coasts, 35:10281035.CrossRefGoogle Scholar
Williams, K., Pinzon, Z. S., Stumpf, R. P., and Raabe, E. A. 1999. Sea-level rise and coastal forests on the Gulf of Mexico. Open-file report 99-441, United States Geological Survey, St. Petersburg, FL.Google Scholar
Willis, J. M., and Hester, M. W. 2004. Interactive effects of salinity, flooding, and soil type on Panicum hemitomon. Wetlands, 24(1):4350.Google Scholar
Wolf, A. A., Drake, B. G., Erickson, J. E., and Megonigal, J. P. 2007. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology, 13:20362044.CrossRefGoogle Scholar
Wolters, M., Garbutt, A., and Bakker, J. P. 2005. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biological Conservation, 123:249268.Google Scholar
Woodrow, I. E., and Berry, J. A. 1988. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annual Review of Plant Physiology and Plant Molecular Biology, 39:533594.CrossRefGoogle Scholar
Woodward, F. I., Thompson, G. B., and McKee, I. F. 1991. The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities, and ecosystems. Annals of Botany, 67:2338.CrossRefGoogle Scholar
Wu, W., Huang, H., Biber, P., and Bethel, M. 2017. Litter decomposition of Spartina alterniflora and Juncus roemerianus: implications of climate change in salt marshes. Journal of Coastal Research, 33(2):372384.Google Scholar
Yeo, A. 1999. Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia-Horticulturae-Amsterdam, 78:159174.Google Scholar
Zedler, J. B. 1983. Freshwater impacts in normally hypersaline marshes. Estuaries, 6:346355.Google Scholar
Zedler, J. B., Williams, P., and Boland, J. 1986. Catastrophic events reveal the dynamic nature of salt-marsh vegetation in southern California. Estuaries, 9(1):7580.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×