Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T20:04:28.952Z Has data issue: false hasContentIssue false

6 - Breathing air in water and in air: the air-breathing fishes

Published online by Cambridge University Press:  05 June 2012

Göran E. Nilsson
Affiliation:
Universitetet i Oslo
Get access

Summary

Introduction

Air breathing is an auxiliary respiratory mode utilized by some fishes when environmental factors such as exposure to hypoxic water or emergence impede aquatic respiration. All of the 28, 000 living fish species use gills to exchange O2 and CO2 with their aqueous environment. However, nearly 400 species, distributed among 50 families and spanning 17 orders of bony fishes (Osteichthyes), are known to be capable of breathing air. Air breathing enables these fishes to survive in and occupy habitats in which aquatic respiration cannot be used to sustain aerobic metabolism. Among all air-breathing fishes, the principal causal factor associated with this specialization is exposure, at some point during their life history, to either chronic or periodic environmental hypoxia.

A chapter on air breathing in fishes is essential for a book about vertebrate adaptation to hypoxia, because fishes are the basal vertebrates and were also the first vertebrates to breathe air (Graham, 1997). The recent literature contains substantive accounts of the adaptations for air breathing (Graham, 1997; Graham, 1999; Graham, 2006) and emersion from water (Sayer, 2005) in fishes. Using three cases studies, this chapter shows how both hypoxia and aerial O2 access have shaped the behavior, physiology, and natural history of different fish groups.

Oxygen and water

With the increasing overlap in disciplines such as comparative physiology, field ecology, and environmental biology, there is a need for precise quantitative terminology describing the properties of water affecting respiration.

Type
Chapter
Information
Respiratory Physiology of Vertebrates
Life With and Without Oxygen
, pp. 174 - 221
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, A. S. and Steffensen, J. F. (1996a). Bimodal respiration and cutaneous oxygen loss in the lungfishLepidosiren paradoxa. Rev. Bras. Biol., 56, 211–16.Google Scholar
Abe, A. S. and Steffensen, J. F. (1996b). Lung and cutaneous respiration in awake and estivating South American lungfish, Lepidosiren paradoxa. Rev. Bras. Biol., 56, 485–9.Google Scholar
Amin-Naves, J., Giusti, H. and Glass, M. L. (2004). Effects of acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation, and blood gas status in the South American lungfish, Lepidosiren paradoxa. Comp. Physiol. Biochem., 138A, 133–9.CrossRefGoogle Scholar
Amin-Naves, J., Sanchez, A. P., Bassi, M., Giusti, H., Rantin, F. T. and Glass, M. L. (2007). Blood gases of the South American lungfish, Lepidosiren paradoxa: a comparison to other air-breathing fish and to amphibians. In Fish Respiration and Environment, ed. Fernandes, M. N., Rantin, F. T., Glass, M. L. and Kapoor, B. G.Enfield, NH: Science Publisher, pp. 243–53.CrossRefGoogle Scholar
Armbruster, J. W. (1998). Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes. Copeia, 1998, 663–75.CrossRefGoogle Scholar
Bassi, M., Klein, W., Fernandes, M. N., Perry, S. F. and Glass, M. L. (2005). Pulmonary oxygen diffusing capacity of the South American lungfish Lepidosiren paradoxa: physiological values by the Bohr method. Physiol. Biochem. Zool., 78, 560–9.CrossRefGoogle ScholarPubMed
Benech, V. and Lek, S. (1981). Résistance á l'hypoxie et observations écologiques pour seize espéces de poissons du Techad. Rev. d‘Hydrobiol. Trop., 14, 153–68.Google Scholar
Berner, R. A., VandenBrooks, J. M.. and Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–8.CrossRefGoogle ScholarPubMed
Bickler, P. E. and Buck, L. T. (2007). Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Ann. Rev. Physiol., 69, 145–70.CrossRefGoogle ScholarPubMed
Brauner, C. J. and Berenbrink, M. (2007). Gas transport and exchange. In Primitive Fishes, Fish Physiology, vol. 26, ed. McKenzie, D. J., Farrell, A. P., and Brauner, C. J.. San Diego: Elsevier Academic Press, pp. 213–82.CrossRefGoogle Scholar
Burggren, W. W. (1982). ‘Air gulping’ improves blood oxygen transport during aquatic hypoxia in the goldfish, Carassius auratus. Physiol. Zool., 55, 327–33.CrossRefGoogle Scholar
Burggren, W. W. and Johansen, K. (1987). Circulation and respiration in lungfishes. In The Biology and Evolution of Lungfishes, ed. Bemis, W. E., Burggren, W. W., and Kemp, N. E.. New York: Liss, pp. 217–36.Google Scholar
Carroll, R. C. (1988). Vertebrate Paleontology and Evolution. New York: Freeman.Google Scholar
Chapman, L. J. and Liem, K. F. (1995). Papyrus swamps and the respiratory ecology ofBarbus neumayeri. Env. Biol. Fishes, 44, 183–97.CrossRefGoogle Scholar
Chew, S. F., Sim, M. Y., Phua, Z. C., Wong, W. P. and Ip, Y. K. (2007). Active ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri (Pallas), during emersion. J. Exp. Zool., 307A, 357–69.CrossRefGoogle Scholar
Chew, S. F., Chan, N. K. Y., Loong, A. M., Hiong, K. C., Tam, W. L. and Ip, Y. K. (2004). Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J. Exp. Biol., 207, 777–86.CrossRefGoogle Scholar
Clack, J. A. (2002). Gaining Ground: the Origin and Early Evolution of Tetrapods. Bloomington: University of Indiana.Google Scholar
Congleton, J. L. (1980). Observations on the responses of some southern California tidepool fishes to nocturnal hypoxic stress. Comp. Biochem. Physiol., 66A, 719–22.CrossRefGoogle Scholar
Daniels, C. B., Orgeig, S., Sullivan, L. C., et al. (2004). The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders. Physiol. Biochem. Zool., 77, 732–49.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). The Origin of Species by Means of Natural Selection. London: Murray.Google Scholar
Moraes, M. F. P. G., Hölle, S., da Costa, O. T. F., Glass, M. L., Fernandes, M. N., and Perry, S. F. (2005). Morphometric comparison of the respiratory organs of the South American lungfishLepidosiren paradoxa. Physiol. Biochem. Zool., 78, 546–59.CrossRefGoogle ScholarPubMed
Oliveira, C., Taboga, S. R., Smarra, A. L. S. and Bonilla-Rodriguez, G. O. (2001). Microscopal aspects of accessory air breathing through a modified stomach in the armoured catfish Liposarcus anisitsi (Siluriformes, Loricariidae). Cytobios, 105, 153–62.Google Scholar
Pinna, M. C. C. (1998). Phylogenetic relationships of Neotropical Siluriformes (Teleostei: Ostariophysi): historical overview and synthesis of hypotheses. In Phylogeny and Classification of Neotropical Fishes, ed. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S.. Porto Alegre, Brazil: EDIPUCRS, pp. 279–330.Google Scholar
Dudley, R. (1998). Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J. Exp. Biol., 201, 1043–50.Google ScholarPubMed
Farrell, A. P. (2007). Cardiovascular systems in primitive fishes. In Primitive Fishes, Fish Physiology, vol. 26, ed. McKenzie, D. J., Farrell, A. P. and Brauner, C. J.. San Diego: Elsevier Academic Press, pp. 53–120.CrossRefGoogle Scholar
Fernandes-Castilho, M., Goncalves-de-Freitas, E., Giaquinto, P. C., Oliveira, C. P. F., Almeida-Val, V. M. and Val, A. L. (2007). Behavior and adaptation of air-breathing fishes. In Fish Respiration and Environment, ed. Fernandes, M. N., Rantin, F. T., Glass, M. L. and Kapoor, B. G.. Enfield, NH: Science Publisher, pp. 121–45.CrossRefGoogle Scholar
Fishman, A. P., Pack, A. I., DeLaney, R. G. and Galante, R. J. (1987). Estivation in Protopterus. In The Biology and Evolution of Lungfishes, ed. Bemis, W. E., Burggren, W. W. and Kemp, N. E.. New York: Liss, pp. 237–48.Google Scholar
Flück, M., Webster, K. A., Graham, J. B., Giomi, F., Gerlach, F. and Schmitz, A. (2007). Coping with cyclic oxygen availability: evolutionary aspects. Int. Comp. Biol., 47, 524–31.CrossRefGoogle ScholarPubMed
Fritsche, R., Axelsson, M., Franklin, C. E., Grigg, G. G., Holmgren, S. and Nilsson, S. (1993). Respiratory and cardiovascular responses to hypoxia in the Australian lungfish. Resp. Physiol., 94, 173–87.CrossRefGoogle ScholarPubMed
Gee, J. H. (1976). Buoyancy and aerial respiration: factors influencing the evolution of reduced swimbladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae). Can. J. Zool., 54, 1030–7.CrossRefGoogle Scholar
Gee, J. H. and Gee, P. A. (1991). Reactions of gobiid fishes to hypoxia: buoyancy control and aquatic surface respiration. Copeia, 1991, 17–28.CrossRefGoogle Scholar
Gee, J. H. and Gee, P. A. (1995). Aquatic surface respiration, buoyancy control and the evolution of air-breathing in gobies (Gobiidae: Pisces). J. Exp. Biol., 198, 79–89.Google Scholar
Gilbert, C. R. (1993). Evolution and phylogeny. In The Physiology of Fishes, ed. Evans, D. H.. Boca Raton: CRC Press, pp. 1–45.Google Scholar
Gonzales, T. T., Katoh, M. and Ishimatsu, A. (2006). Air breathing of the aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae). J. Exp. Biol., 209, 1085–92.CrossRefGoogle Scholar
Gonzales, T. T., Katoh, M. and Ishimatsu, A. (2008). Respiratory vasculatures of the intertidal air-breathing eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae). Env. Biol. Fishes, 82, 341–51.CrossRefGoogle Scholar
Gracey, A. Y. (2008). The Gillichthys mirabilis Cooper array: a platform to investigate the molecular basis of phenotype plasticity. J. Fish. Biol., 72, 2118–32.CrossRefGoogle Scholar
Gracey, A. Y. and Cossins, A. R. (2003). Application of microarray technology in environmental and comparative physiology. Ann. Rev. Physiol., 65, 231–59.CrossRefGoogle ScholarPubMed
Gracey, A. Y., Troll, J. V. and Somero, G. N. (2001). Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc. Natl. Acad. Sci. USA, 98, 1993–8.CrossRefGoogle ScholarPubMed
Graham, J. B. (1976). Respiratory adaptations of marine air-breathing fishes. In Respiration of Amphibious Vertebrates, ed. Hughes, G. M.. London: Academic Press, pp. 165–87.Google Scholar
Graham, J. B. (1983). The transition to air breathing in fishes: II. Effects of hypoxia acclimation on the bimodal gas exchange of Ancistrus chagresi and Hypostomus plecostomus (Loricariidae). J. Exp. Biol., 102, 157–73.Google Scholar
Graham, J. B. (1985). Seasonal and environmental effects on the blood hemoglobin concentrations of some Panamanian air-breathing fishes. Env. Biol. Fishes, 12, 291–301.CrossRefGoogle Scholar
Graham, J. B. (1997). Air Breathing Fishes: Evolution, Diversity and Adaptation. San Diego: Academic Press.Google Scholar
Graham, J. B. (1999). Comparative aspects of air-breathing fish biology: an agenda for some neotropical species. In The Biology of Tropical Fishes, ed. Val, A. L. and Almeida-Val, V. M. F.Manaus, Brazil: INPA, pp. 317–31.Google Scholar
Graham, J. B. (2006). Aquatic and aerial respiration. In The Physiology of Fishes, 3rd edn, ed. Evans, D. H. and Claiborne, J. B.. Boca Raton: CRC Press, pp. 85–117.Google Scholar
Graham, J. B. and Baird, T. A. (1982). The transition to air breathing in fishes: I. Environmental effects on the facultative air breathing of Ancistrus chagresi and Hypostomus plecostomus (Loricariidae). J. Exp. Biol., 102, 157–73.Google Scholar
Graham, J. B. and Lee, H. J. (2004). Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?Physiol. Biochem. Zool., 77, 720–31.CrossRefGoogle ScholarPubMed
Graham, J. B., Lee, H. J. and Wegner, N. C. (2007). Transition from water to land in an extant group of fishes: air breathing and the acquisition sequence of adaptations for amphibious life in oxudercine gobies. In Fish Respiration and Environment, ed. Fernandes, M. N., Rantin, F. T., Glass, M. L. and Kapoor, B. G.. Enfield, NH: Science Publisher, pp. 255–88.CrossRefGoogle Scholar
Graham, J. B., Dudley, R., Aguilar, N. M. and Gans, C. (1995). Implications of the Late Palaeozoic oxygen pulse for physiology and evolution. Nature, 375, 117–20.CrossRefGoogle Scholar
Greenwood, P. H. (1987). The natural history of African lungfishes. In The Biology and Evolution of Lunfishes, ed. Bemis, W. E., Burggren, W. W. and Kemp, N. E.. New York: Liss, pp. 163–79.Google Scholar
Grigg, G. C. (1965). Studies on the Queensland lungfish, Neoceratodus forsteri (Krefft). III. Aerial respiration in relation to habits. Aust. J. Zool., 13, 413–21.CrossRefGoogle Scholar
Halpin, P. M. and Martin, K. L. M. (1999). Aerial respiration in the salt marsh fish Fundulus heteroclitus (Fundulidae). Copeia, 1999, 743–8.CrossRefGoogle Scholar
Harder, V., Souza, R. H. S., Severi, W., Rantin, F. T. and Bridges, C. R. (1999). The South American lungfish – adaptations to an extreme habitat. In Biology of Tropical Fishes, ed. Val, A. L. and Almeida-Val, V. M.. Manaus, Brazil: INPA, pp. 87–98.Google Scholar
Helfman, G. S., Collette, B. B. and Facey, D. E. (1997). The Diversity of Fishes. Malden, MA: Blackwell.Google Scholar
Hill, J. V., Davison, W. and Marsden, I. D. (1996). Aspects of the respiratory biology of two New Zealand intertidal fishes, Acanthoclinus fuscus and Forsterygion sp. Env. Biol. Fishes, 45, 85–93.CrossRefGoogle Scholar
Huey, R. B. and Ward, P. D. (2005). Hypoxia, global warming, and terrestrial Late Permian extinctions. Science, 308, 398–401.CrossRefGoogle ScholarPubMed
Hughes, G. M. (1976). On the respiration of Latimeria chalumnae. Zool. J. Linn. Soc., 59, 195–208.CrossRefGoogle Scholar
Icardo, J. M., Brunelli, E., Perrotta, I., Colvee, E., Wong, W. P. and Ip, Y. K. (2005a). Ventricle and outflow tract of the African lungfish Protopterus dolloi. J. Morph., 265, 43–51.CrossRefGoogle ScholarPubMed
Icardo, J. M., Ojeda, J. L., Colvee, E., Tota, B., Wong, W. P. and Ip, Y. K. (2005b). Heart inflow tract of the African lungfish Protopterus dolloi. J. Morph., 263, 30–8.CrossRefGoogle ScholarPubMed
Ip, Y. K., Chew, S. F. and Randall, D. (2004). Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land. Physiol. Biochem. Zool., 77, 768–82.CrossRefGoogle ScholarPubMed
Ip, Y. K., Lim, C. B. and Chew, S. F. (2006). Intermediary metabolism in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddarti, during immersion or emersion. Can. J. Zool., 84, 981–91.CrossRefGoogle Scholar
Ishimatsu, A., Hishida, A., Takita, Y. T., et al. (1998). Mudskippers store air in their burrows. Nature, 391, 237–8.CrossRefGoogle Scholar
Ishimatsu, A., Aguilar, N. M., Ogawa, K., Hishida, Y., Takeda, T. and Khoo, K. H. (1999). Arterial blood gas levels and cardiovascular function during varying environmental conditions in a mudskipper, Periophthalmodon schlosseri. J. Exp. Biol., 202, 1753–62.Google Scholar
Ishimatsu, A., Yoshida, Y, Itoki, N., Takeda, T., Lee, H. J. and Graham, J. B. (2007). Mudskippers brood their eggs in air but submerge them for hatching. J. Exp. Biol., 210, 3946–54.CrossRefGoogle ScholarPubMed
Janvier, P., (2007). Living primitive fishes and fishes from deep time. In Primitive Fishes, Fish Physiology, vol. 26, ed. McKenzie, D. J., Farrell, A. P. and Brauner, C. J.. San Diego: Elsevier Academic Press, pp. 1–51.Google Scholar
Kaiser, A., Klok, C. J., Socha, J. J., Lee, W-K, Quinlan, M. C. and Harrison, J. F. (2007). Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc. Nat. Acad. Sci., 104, 13198–203.CrossRefGoogle ScholarPubMed
Kemp, A. (1987). The biology of the Australian lungfish, Neoceratodus forsteri. In The Biology and Evolution of Lungfishes, ed. Bemis, W. E., Burggren, W. W. and Kemp, N. E.. New York: Liss, pp. 181–98.Google Scholar
Kind, P. K., Grigg, G. C. and Booth, D. T. (2002). Physiological responses to prolonged hypoxia in the Queensland lungfish Neoceratodus forsteri. Respir. Physiol. Neurobiol., 132, 179–90.CrossRefGoogle ScholarPubMed
Kok, W. K., Lim, C. B., Lim, T. J. and Ip, Y. K. (1998). The mudskipper Periophthalmodon schlosseri respires more efficiently on land than in water and vice versa for Boleophthalmus boddaerti. J. Exp. Zool., 280, 86–90.3.0.CO;2-U>CrossRefGoogle Scholar
Lee, H. J., Martinez, C. A., Hertzberg, K. J., Hamilton, A. L. and Graham, J. B. (2005). Burrow air phase maintenance and respiration by the mudskipper Scartelaos histophorus (Gobiidae: Oxudercinae). J. Exp. Biol., 208, 169–77.CrossRefGoogle Scholar
Liem, K. L. (1988). Form and function of lungs: the evolution of air breathing mechanisms. Amer. Zool., 28, 739–59.CrossRefGoogle Scholar
Liem, K. L. (1989). Respiratory gas bladders in teleosts: functional conservation and morphological diversity. Amer. Zool., 29, 333–52.CrossRefGoogle Scholar
Long, J. A. (1995). The Rise of Fishes. Baltimore: Johns Hopkins.Google Scholar
Maina, J. N. (1987). The morphology of the lung of the African lungfish, Protopterus aethiopicus. Cell Tiss. Res., 250, 197–204.CrossRefGoogle ScholarPubMed
Maina, J. N. (2002). Functional Morphology of the Vertebrate Respiratory Systems. Enfield, NH: Science Publishers.Google Scholar
Maina, J. N., Wood, C. M., Narahara, A., Bergman, H. L., Laurent, P. and Walsh, P. (1996). Morphology of the swim (air) bladder of a cichlid teleost: Oreochromis alcalicus grahami (Trewavas, 1983), a fish adapted to a hyperosmotic, alkaline, and hypoxic environment: a brief outline of the structure and function of the swimbladder. In Fish Morphology: Horizon of New Research, ed. Datta Munshi, J. S. and Dutta, H. N.. Lebanon: Science Publishers, pp. 179–92.Google Scholar
Martin, K. L. M. (1995). Time and tide wait for no fish: intertidal fishes out of water. Env. Biol. Fishes, 44, 165–81.CrossRefGoogle Scholar
Martin, K. L. M. and Bridges, C. R. (1999). Respiration in water and air. In Intertidal Fishes: Life in Two Worlds, ed. Horn, M. H., Martin, K. L. M. and Chotowski, M.San Diego, Academic Press, pp. 54–78.CrossRefGoogle Scholar
Mattias, A. T., Rantin, F. T. and Fernandes, M. N. (1998). Gill respiratory parameters during progressive hypoxia in the facultative air-breathing fish, Hypostomus regaini (Loricariidae). Comp. Biochem. Physiol., 120A, 311–15.CrossRefGoogle Scholar
Mazlan, A. G., Masitah, A. and Mabani, M. C. (2006). Fine structure of the gills and skins of the amphibious mudskipper, Periophthalmus chrysospilos Bleeker, 1852 and a non-amphibious goby Favonigobius reichei (Bleeker, 1853). Acta Ichthyol. Piscat., 36, 127–133.CrossRefGoogle Scholar
McKenzie, D. J., Campbell, H. A., Taylor, E. W., Micheli, M., Rantin, F. T. and Abe, A. S. (2007). The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus. J. Exp. Biol., 210, 4224–32.CrossRefGoogle ScholarPubMed
Moritz, T. and Linsenmair, K. E. (2007). The air-breathing behavior of Brevimyrus niger (Osteoglossomorpha, Mormyridae). J. Fish. Biol., 71, 279–83.CrossRefGoogle Scholar
Murdy, E. O. (1989). A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Rec. Aust. Mus. Suppl., 11, 1–93.CrossRefGoogle Scholar
Nelson, J. A., Rios, F. S., Sanches, J. R., Fernandes, M. N. and Rantin, F. T. (2007). Environmental influences on the respiratory physiology and gut chemistry of a facultatively air-breathing, tropical herbivorous fish Hypostomus regani (Ihering, 1905). In Fish Respiration and Environment, ed. Fernandes, M. N., Rantin, F. T., Glass, M. L. and Kapoor, B. G.. Enfield, NH: Science Publishers, pp. 191–217.CrossRefGoogle Scholar
Nelson, J. S. (2006). Fishes of the World. Hoboken, NJ: Wiley.Google Scholar
Nikinmaa, M. and Rees, B. B. (2005). Oxygen-dependent gene expression in fishes. Amer. J. Physiol. Regul. Integr. Comp. Physiol., 288, R1079–90.CrossRefGoogle ScholarPubMed
Nilsson, G. E., Hobbs, J-P, A., Östlund-Nilsson, S. and Munday, P. L. (2007). Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes. Coral Reefs, 26, 241–8.CrossRefGoogle Scholar
Ong, K. J., Stevens, E. D. and Wright, P. A. (2007). Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J. Exp. Biol., 210, 1109–15.CrossRefGoogle ScholarPubMed
Palzenberger, M. and Pohla, H. (1992). Gill surface area of water-breathing freshwater fish. Rev. Fish Biol. Fish., 2, 187–216.CrossRefGoogle Scholar
Park, J. Y. (2002). Structure of the skin of an air-breathing mudskipper, Periophthalmus magnuspinnatus. J. Fish Biol., 60, 1543–50.CrossRefGoogle Scholar
Park, J. Y., Lee, Y. J., Kim, I. S. and Kim, S. Y. (2003). Morphological and cytological study of the skin of the Korean eel goby, Odontamblyopus lacepedii (Pisces, Gobiidae). Korean J. Biol. Sci., 7, 43–7.CrossRefGoogle Scholar
Perna, S. A. and Fernandes, M. N. (1996). Gill morphometry of the facultative air-breathing loricariid fish, Hypostomus plecostomus (Walbaum) with special emphasis on aquatic respiration. Fish Physiol. Biochem., 15, 213–20.CrossRefGoogle Scholar
Perry, S. F. (2007). Swimbladder-lung homology in basal osteichthyes revisited. In Fish Respiration and Environment, ed. Fernandes, M. N., Rantin, F. T., Glass, M. L. and Kapoor, B. G.. Enfield, NJ: Science Publishers, pp. 41–54.CrossRefGoogle Scholar
Perry, S. F. and Sander, M. (2004). Reconstructing the evolution of the respiratory apparatus in tetrapods. Resp. Physiol. Neurobiol., 144, 125–39.CrossRefGoogle ScholarPubMed
Perry, S. F., Gilmour, K. M., Vulesevic, B., McNeill, B., Chew, S. F. and Ip, Y. K. (2005). Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia. Physiol. Biol. Zool., 78, 325–34.CrossRefGoogle ScholarPubMed
Podkowa, D. and Goniakowska-Witalińska, L. (1998). The structure of the air bladder of the catfish Pangasius hypophthalmus Roberts and Vidthayanon 1991 (previously P. sutchi Fowler 1937). Folia Biol. (Krakόw), 46, 189–96.Google Scholar
Podkowa, D. and Goniakowska-Witalińska, L. (2002). Adaptations to air breathing in the posterior intestine of the catfish (Corydoras aeneus, Callicthyidae): a histological and ultrastructural study. Folia Biol. (Krakόw), 50, 69–82.Google ScholarPubMed
Podkowa, D. and Goniakowska-Witalińska, L. (2003). Morphology of the air-breathing stomach of the catfish Hypostomus plecostomus. J. Morph., 257, 147–63.CrossRefGoogle ScholarPubMed
Potter, I. C., Macey, D. J. and Roberts, A. R. (1997). Oxygen uptake and carbon dioxide excretion by the branchial and postbranchial regions of adults of the lamprey Geotria australis in air. J. Comp. Physiol., 166B, 331–6.Google Scholar
Powell, F. L. (2003). Functional genomics and the comparative physiology of hypoxia. Ann. Rev. Physiol., 65, 203–30.CrossRefGoogle ScholarPubMed
Power, J. H. T., Doyle, I. R., Davidson, K. and Nicholas, T. E. (1999). Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years. J. Exp. Biol., 202, 2543–50.Google ScholarPubMed
Randall, D. J., Ip, Y. K., Chew, S. F. and Wilson, J. W. (2004). Air breathing and ammonia excretion in the mudskipper, Periophthalmodon schlosseri. Physiol. Biochem. Zool., 77, 783–8.CrossRefGoogle Scholar
Romer, A. S. (1972). Skin breathing – primary or secondary? Resp. Physiol., 14, 183–92.CrossRefGoogle ScholarPubMed
Ross, L. G. (2000). Environmental physiology and energetics. In Tilapias: Biology and Exploitation, ed. Beveridge, M. C. M. and McAndrew, B. J.. Dordrecht: Kluwer, pp. 89–128.CrossRefGoogle Scholar
Sanchez, A., Soncini, R., Wang, T., Koldkjaer, P., Taylor, E. W. and Glass, M. L. (2001). The differential cardio-respiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol., 130A, 677–87.CrossRefGoogle Scholar
Santos, C. T. C., Fernandes, M. N. and Severi, W. (1994). Respiratory gill surface area of a facultative air-breathing loricariid fish, Rhinelepis strigosa. Can. J. Zool., 72, 2009–113.CrossRefGoogle Scholar
Satchell, G. H. (1976). The circulatory system of air-breathing fish. In Respiration of Amphibious Vertebrates, ed. Hughes, G. M.. London: Academic Press, pp. 105–23.Google Scholar
Sayer, M. D. J. (2005). Adaptations of amphibious fish for surviving life out of water. Fish and Fish., 6, 186–211.CrossRefGoogle Scholar
Seymour, R. S., Wegner, N. C. and Graham, J. B. (2008). Body size and the air-breathing organ of the Atlantic tarpon Megalops atlanticus. Comp. Biochem. Physiol., 150A, 282–7.CrossRefGoogle ScholarPubMed
Silva, J. M., Hernandez-Blanquez, F. J. and Julio, H. F. Jr. (1997). A new accessory respiratory organ in fishes: morphology of the respiratory purses of Loricariichthys platymetopon (Pisces, Loricariidae). Ann. Sci. Natur. Zool. Paris, 18, 93–103.Google Scholar
Smith, H. W. (1930). Metabolism of the lungfish Protopterus aethiopicus. J. Biol. Chem., 88, 97–130.Google Scholar
Sturla, M., Paola, P., Carlo, G., Angela, M. M. and Maria, U. B. (2002). Effects of induced aestivation in Protopterus annectens: a histomorphological study. J. Exp. Zool., 292, 26–31.CrossRefGoogle ScholarPubMed
Takasusuki, J., Fernandes, M. N. and Severi, W. (1998). The occurrence of aerial respiration in Rhinelepis strigosa during progressive hypoxia. J. Fish. Biol., 52, 369–79.Google Scholar
Takeda, T., Ishimatsu, A., Oikawa, S., Kanda, T., Hishida, Y. and Khoo, K. H. (1999). Mudskipper Periophthalmodon schlosseri can repay oxygen debts in air but not in water. J. Exp. Zool., 284, 265–70.3.0.CO;2-X>CrossRefGoogle Scholar
Taylor, D. S., Turner, B. J., Davis, W. P. and Chapman, B. B. (2008). A novel terrestrial fish habitat inside emergent logs. Amer. Nat., 171, 263–66.CrossRefGoogle ScholarPubMed
Thacker, C. E. (2003). Molecular phylogeny of the gobiod fishes (Teleostei: Perciformes: Gobioidei). Molec. Phylogen. Evol., 26, 354–68.CrossRefGoogle Scholar
Todd, E. S. and Ebeling, A. W. (1966). Aerial respiration in the longjaw mudsucker Gillichthys mirabilis (Teleostei: Gobiidae). Biol. Bull., 130, 265–88.CrossRefGoogle Scholar
Torday, J. S., Rehan, V. K., Hicks, J. W., et al. (2007). Deconvoluting lung evolution: from phenotypes to gene regulatory networks. Int. Comp. Biol., 47, 601–9.CrossRefGoogle ScholarPubMed
Urist, M. R. (1973). Testosterone-induced development of limb gills of the lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol., 44A, 131–5.CrossRefGoogle Scholar
Val, A. L. and Almeida-Val., V. M. F. (1995). Fishes of the Amazon and their Environment. Berlin: Springer.CrossRefGoogle Scholar
Val., A. L., Almeida-Val, V. M. F., and Affonso, E. G. (1990). Adaptative features of Amazon fishes: hemoglobins, hematology, and intraerythrocytic phosphates and whole blood Bohr effect of Pterogoplichthys multilradiatus (Siluriformes). Comp. Biochem. Physiol., 97B, 435–44.Google Scholar
Ward, P., Labandeira, C., Lauren, M. and Berner, R. A. (2006). Confirmation of Romer's Gap as a low oxygen interval constraining the timing of critical arthropod and vertebrate terrestrialization. Proc. Natl. Acad. Sci., 103, 16818–22.CrossRefGoogle Scholar
Wells, N. A. and Dorr, J. A. (1985). Form and function of the fish Bothriolepis (Devonian; Placodermi, Antiarchi): the first terrestrial vertebrate? Mich. Acad., 17, 157–73.Google Scholar
Wells, R. M. G., Baldwin, J., Seymour, R. S., Christian, K. and Farrell, A. P. (2007). Air breathing minimizes post-exercise lactate load in the tropical Pacific tarpon, Megalops cyprinoides Broussonet 1782 but oxygen debt is repaid by aquatic breathing. J. Fish Biol., 71, 1649–61.CrossRefGoogle Scholar
Yoshiyama, R. C., Valpey, C. J., Schalk, L. L., et al. (1995). Differential propensities for aerial emergence in intertidal sculpins (Teleostei: Cottidae). J. Exp. Mar. Biol. Ecol., 191, 195–207.CrossRefGoogle Scholar
Zaccone, G., Fusulo, S. and Ainis, L. (1995). Gross anatomy, histology, and immunochemistry of respiratory organs of air-breathing and teleost fishes with particular reference to the neuroendocrine cells and their relationship to the lung and the gill as endocrine organs. In Histology, Ultrastructure, and Immunochemistry of the Respiratory Organs in Non-Mammalian Vertebrates, ed. Pastor, L. M.. Murcia, Spain: Secretariado de Publicaciones de la Universidad de Murcia, pp 17–43.Google Scholar
Zhang, J., Taniguchi, T., Takita, T. and Ali, A. B. (2000). On the epidermal structure of Boleophthalmus and Scartelaos mudskippers with reference to their adaptation to terrestrial life. Ichthyol. Res., 47, 359–66.CrossRefGoogle Scholar
Zhang, J., Taniguchi, T., Takita, T. and Ali, A. B. (2003). A study on the epidermal structure of Periophthalmodon and Periophthalmus mudskippers with reference to their terrestrial adaptation. Ichthyol. Res., 50, 310–17.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×