Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T13:23:44.768Z Has data issue: false hasContentIssue false

3 - Brain imaging and the neuroanatomical correlates of autism

Published online by Cambridge University Press:  04 February 2011

Ilona Roth
Affiliation:
The Open University, Milton Keynes
Payam Rezaie
Affiliation:
The Open University, Milton Keynes
Get access

Summary

Although brain structure in Autism Spectrum Disorders (ASD) has been extensively investigated using magnetic resonance imaging techniques, considerable heterogeneity across studies exists for findings at the level of individual brain structures and regions. An important theme to emerge, however, is of structural alterations within the neural circuit that has become known as the ‘social brain’ – including the amygdala, superior temporal sulcus, fusiform face area and orbito-frontal cortex. Evidence points also to altered structure in the caudate nucleus in association with restricted and repetitive behaviours. Diffusion tensor imaging studies suggest aberrant connectivity between social brain structures and also between these areas and other cortical regions. Important future roles for structural neuroimaging will include longitudinal studies to investigate developmental trajectories in ASD, and efforts to join together neuroimaging and genomic techniques and to relate these findings to neuropathological studies.

Background

The notion that mental illness is a somatic disorder of the brain was put forward in 1845 by Wilhelm Griesinger (Griesinger, 1845), first Professor of psychiatry and neurology in Berlin, and has been actively investigated ever since. The initial work was neuropathological as there existed no means of visualising the brain in life but clear cut results were obtained in some disorders (Alzheimer, 1897; Wernicke, 1881) and where no such findings could be demonstrated as in schizophrenia, work still continued (Dunlap, 1924; Klippel and Lhermitte, 1909).

Type
Chapter
Information
Researching the Autism Spectrum
Contemporary Perspectives
, pp. 112 - 155
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, F., Krams, M., Ashburner, J., et al. (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport, 10: 1647–1651.CrossRefGoogle ScholarPubMed
Alexander, A.L., Lee, J.E., Lazar, M., et al. (2007). Diffusion tensor imaging of the corpus callosum in autism. Neuroimage, 34: 61–73.CrossRefGoogle ScholarPubMed
Allen, G., Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. American Journal of Psychiatry, 160: 262–273.CrossRefGoogle ScholarPubMed
Allen, G., Muller, R.A., Courchesne, E. (2004). Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biological Psychiatry, 56: 269–278.CrossRefGoogle ScholarPubMed
Allen, J.S., Damasio, H., Grabowski, T.J., Bruss, J., Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage, 18: 880–894.CrossRefGoogle ScholarPubMed
Alzheimer, A. (1897). Beitrage zur pathologischen anatomie der hirnrinde und zur anatoischen grundlage der psychosen. Monatsschrift für Psychiatrie und Neurologie, 2: 82–120.CrossRefGoogle Scholar
,American Association on Intellectual and Developmental Disabilities. (2010). Intellectual Disability: Definition, Classification, and Systems Of Supports, 11th edn. Washington: AAIDD.
,American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edn, Text Revised (DSM-IV TR). Washington, DC: American Psychiatric Association.Google Scholar
Ashburner, J., Friston, K.J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11: 805–821.CrossRefGoogle ScholarPubMed
Ashwin, C., Baron-Cohen, S., Wheelwright, S., O'Riordan, M., Bullmore, E.T. (2007). Differential activation of the amygdala and the ‘social brain’ during fearful face-processing in Asperger Syndrome. Neuropsychologia, 45: 2–14.CrossRefGoogle ScholarPubMed
Asperger, H. (1944). Die ‘Autistichen Psychopathen’ im Kindersalter. Archive für Psychiatrie und Nervenkrankheiten, 117: 76–136.CrossRefGoogle Scholar
Aylward, E.H., Schwartz, J., Machlin, S., Pearlson, G. (1991). Bicaudate ratio as a measure of caudate volume on MR images. American Journal of Neuroradiology, 12: 1217–1222.Google ScholarPubMed
Aylward, E.H., Minshew, N.J., Goldstein, G., et al. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53: 2145–2150.CrossRefGoogle ScholarPubMed
Aylward, E.H., Minshew, N.J., Field, K., Sparks, B.F., Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59: 175–183.CrossRefGoogle ScholarPubMed
Bailey, A., Luthert, P., Dean, A., et al. (1998). A clinicopathological study of autism. Brain, 121: 889–905.CrossRefGoogle ScholarPubMed
Balottin, U., Bejor, M., Cecchini, A., et al. (1989). Infantile autism and computerized tomography brain-scan findings: specific versus nonspecific abnormalities. Journal of Autism and Developmental Disorders, 19: 109–117.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Kwon, H., Menon, V., et al. (2004). White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55: 323–326.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Knickmeyer, R.C., Belmonte, M.K. (2005). Sex differences in the brain: implications for explaining autism. Science, 310: 819–823.CrossRefGoogle ScholarPubMed
Basser, P.J., Mattiello, J., LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66: 259–267.CrossRefGoogle Scholar
Battaglia, A., Carey, J.C. (2006). Etiologic yield of autistic spectrum disorders: A prospective study. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 142: 3–7.CrossRefGoogle Scholar
Bauman, M.L., Kemper, T.L. (1997). Is autism a progressive process? Neurology, 48 (Suppl.): 285.Google Scholar
Bauman, M.L., Kemper, T.L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23: 183–187.CrossRefGoogle ScholarPubMed
Belmonte, M.K., Mazziotta, J.C., Minshew, N.J., et al. (2008). Offering to share: how to put heads together in autism neuroimaging. Journal of Autism and Developmental Disorders, 38: 2–13.CrossRefGoogle ScholarPubMed
Ben-Bashat, D., Kronfeld-Duenias, V., Zachor, D.A., et al. (2007). Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage, 37: 40–47.CrossRefGoogle Scholar
Berthier, M.L., Starkstein, S.E., Leiguarda, R. (1990). Developmental cortical anomalies in Asperger's syndrome: neuroradiological findings in two patients. Journal of Neuropsychiatry and Clinical Neurosciences, 2: 197–201.Google ScholarPubMed
Blanton, R.E., Levitt, J.G., Thompson, P.M., et al. (2001). Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Research, 107: 29–43.CrossRefGoogle ScholarPubMed
Bloss, C.S., Courchesne, E. (2007). MRI neuroanatomy in young girls with autism: a preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry, 46: 515–523.CrossRefGoogle ScholarPubMed
Boddaert, N., Chabane, N., Gervais, H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage, 23: 364–369.CrossRefGoogle ScholarPubMed
Boger-Megiddo, I., Shaw, D.W., Friedman, S.D., et al. (2006). Corpus callosum morphometrics in young children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 36: 733–739.CrossRefGoogle ScholarPubMed
Boucher, J., Cowell, P., Howard, M., et al. (2005). A combined clinical, neuropsychological, and neuroanatomical study of adults with high functioning autism. Cognitive Neuropsychiatry, 10: 165–213.CrossRefGoogle ScholarPubMed
Brambilla, P., Hardan, A., di Nemi, S.U., et al. (2003). Brain anatomy and development in autism: review of structural MRI studies. Brain Research Bulletin, 61: 557–569.CrossRefGoogle ScholarPubMed
Brieber, S., Neufang, S., Bruning, N., et al. (2007). Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48: 1251–1258.CrossRefGoogle ScholarPubMed
Brierley, B., Shaw, P., David, A.S. (2002). The human amygdala: a systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Research Reviews, 39: 84–105.CrossRefGoogle ScholarPubMed
Brito, A.R., Vasconcelos, M.M., Domingues, R.C., et al. (2009). Diffusion tensor imaging findings in school-aged autistic children. Journal of Neuroimaging, 19: 337–343.CrossRefGoogle ScholarPubMed
Bruggemann, J.M., Wilke, M., Som, S.S., et al. (2009). Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: limitations of grey matter analysis. Journal of Clinical Neuroscience, 16: 780–785.CrossRefGoogle ScholarPubMed
Bush, G., Vogt, B.A., Holmes, J., et al. (2002). Dorsal anterior cingulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Sciences USA, 99: 523–528.CrossRefGoogle ScholarPubMed
Butler, M.G., Dasouki, M.J., Zhou, X.P., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42: 318–321.CrossRefGoogle ScholarPubMed
Carper, R.A., Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123: 836–844.CrossRefGoogle ScholarPubMed
Carper, R.A., Moses, P., Tigue, Z.D., Courchesne, E. (2002). Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage, 16: 1038–1051.CrossRefGoogle ScholarPubMed
Castellanos, F.X., Lee, P.P., Sharp, W., et al. (2002).Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Medical Association, 288: 1740–1748.CrossRefGoogle ScholarPubMed
Catani, M., Jones, D.K., Daly, E., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41: 1184–1191.CrossRefGoogle ScholarPubMed
Chakrabarti, S., Fombonne, E. (2005). Pervasive developmental disorders in preschool children: confirmation of high prevalence. American Journal of Psychiatry, 162: 1133–1141.CrossRefGoogle ScholarPubMed
Cheung, C., Chua, S.E., Cheung, V., et al. (2009). White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. Journal of Child Psychology and Psychiatry, 50: 1102–1112.CrossRefGoogle ScholarPubMed
Chiu, P.H., Kayali, M.A., Kishida, K.T., et al. (2008a). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57: 463–473.CrossRefGoogle ScholarPubMed
Chiu, S., Widjaja, F., Bates, M.E., et al. (2008b). Anterior cingulate volume in pediatric bipolar disorder and autism. Journal of Affective Disorders, 105: 93–99.CrossRefGoogle ScholarPubMed
Chung, M.K., Dalton, K.M., Alexander, A.L., Davidson, R.J. (2004). Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage, 23: 242–251.CrossRefGoogle ScholarPubMed
Chung, M.K., Robbins, S.M., Dalton, K.M., et al. (2005). Cortical thickness analysis in autism with heat kernel smoothing. Neuroimage, 25: 1256–1265.CrossRefGoogle ScholarPubMed
Conturo, T.E., Lori, N.F., Cull, T.S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences USA, 96: 10422–10427.CrossRefGoogle ScholarPubMed
Conturo, T.E., Williams, D.L., Smith, C.D., et al. (2008). Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways. Journal of the International Neuropsychological Society, 14: 933–946.CrossRefGoogle ScholarPubMed
Courchesne, E. (2002). Abnormal early brain development in autism. Molecular Psychiatry, 7 (Suppl. 2): S21-S23.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., Press, G.A., Hesselink, J.R., Jernigan, T.L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318: 1349–1354.CrossRefGoogle ScholarPubMed
Courchesne, E., Karns, C.M., Davis, H.R., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57: 245–254.CrossRefGoogle Scholar
Courchesne, E., Carper, R., Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290: 337–344.CrossRefGoogle ScholarPubMed
Craig, M.C., Zaman, S.H., Daly, E.M., et al. (2007). Women with autistic-spectrum disorder: magnetic resonance imaging study of brain anatomy. British Journal of Psychiatry, 191: 224–228.CrossRefGoogle ScholarPubMed
Critchley, H.D., Daly, E.M., Bullmore, E.T., et al. (2000). The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123: 2203–2212.CrossRefGoogle ScholarPubMed
Dabbs, K., Jones, J., Seidenberg, M., Hermann, B. (2009). Neuroanatomical correlates of cognitive phenotypes in temporal lobe epilepsy. Epilepsy and Behavior, 15: 445–451.CrossRefGoogle ScholarPubMed
Dalton, K.M., Nacewicz, B.M., Johnstone, T., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8: 519–526.CrossRefGoogle ScholarPubMed
Damasio, H., Maurer, R.G., Damasio, A.R., Chui, H.C. (1980). Computerized tomographic scan findings in patients with autistic behavior. Archives of Neurology, 37: 504–510.CrossRefGoogle ScholarPubMed
Dane, S., Balci, N. (2007). Handedness, eyedness and nasal cycle in children with autism. International Journal of Developmental Neuroscience, 25: 223–226.CrossRefGoogle ScholarPubMed
Davis, L.K., Hazlett, H.C., Librant, A.L., et al. (2008). Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase A gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B: 1145–1151.CrossRefGoogle ScholarPubMed
Dawson, G., Munson, J., Webb, S.J., et al. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61: 458–464.CrossRefGoogle ScholarPubMed
Fossé, L., Hodge, S.M., Makris, N., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56: 757–766.CrossRefGoogle ScholarPubMed
Decobert, F., Grabar, S., Merzoug, V., et al. (2005). Unexplained mental retardation: is brain MRI useful? Pediatric Radiology, 35: 587–596.CrossRefGoogle ScholarPubMed
Deeley, Q., Daly, E.M., Surguladze, S., et al. (2007). An event related functional magnetic resonance imaging study of facial emotion processing in Asperger syndrome. Biological Psychiatry, 62: 207–217.CrossRefGoogle ScholarPubMed
Degreef, G., Bogerts, B., Falkai, P., et al. (1992). Increased prevalence of the cavum septum pellucidum in magnetic resonance scans and post-mortem brains of schizophrenic patients. Psychiatry Research, 45: 1–13.CrossRefGoogle ScholarPubMed
Dunlap, C.B. (1924). Dementia praecox: some preliminary observations on brains from carefully selected cases and a consideration of certain sources of error. American Journal of Psychiatry, 80: 403–421.CrossRefGoogle Scholar
Egaas, B., Courchesne, E., Saitoh, O. (1995). Reduced size of corpus callosum in autism. Archives of Neurology, 52: 794–801.CrossRefGoogle ScholarPubMed
Elia, M., Ferri, R., Musumeci, S.A., et al. (2000). Clinical correlates of brain morphometric features of subjects with low-functioning autistic disorder. Journal of Child Neurology, 15: 504–508.CrossRefGoogle ScholarPubMed
Escalante-Mead, P.R., Minshew, N.J., Sweeney, J.A. (2003). Abnormal brain lateralization in high-functioning autism. Journal of Autism and Developmental Disorders, 33: 539–543.CrossRefGoogle ScholarPubMed
Fombonne, E. (2005). The changing epidemiology of autism. Journal of Applied Research in Intellectual Disabilities, 18: 281–284.CrossRefGoogle Scholar
Freitag, C.M., Konrad, C., Haberlen, M., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46: 1480–1494.CrossRefGoogle ScholarPubMed
Frith, C. (2004). Is autism a disconnection disorder? Lancet Neurology, 3: 577.CrossRefGoogle ScholarPubMed
Fryers, T., Russell, O. (1997). Applied epidemiology. In Seminars in the Psychiatry of Learning Disability. London: Gaskell pp. 31–47.Google Scholar
Gaffney, G.R., Kuperman, S., Tsai, L.Y., Minchin, S., Hassanein, K.M. (1987a). Midsagittal magnetic resonance imaging of autism. British Journal of Psychiatry, 151: 831–833.CrossRefGoogle ScholarPubMed
Gaffney, G.R., Tsai, L.Y., Kuperman, S., Minchin, S. (1987b). Cerebellar structure in autism. American Journal of Diseases of Children, 141: 1330–1332.Google ScholarPubMed
Galderisi, S., Vita, A., Rossi, A., et al. (2000). Qualitative MRI findings in patients with schizophrenia: a controlled study. Psychiatry Research, 98: 117–126.CrossRefGoogle ScholarPubMed
Garber, H.J., Ritvo, E.R., Chiu, L.C., et al. (1989). A magnetic resonance imaging study of autism: normal fourth ventricle size and absence of pathology. American Journal of Psychiatry, 146: 532–534.Google ScholarPubMed
Gervais, H., Belin, P., Boddaert, N., et al. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience, 7: 801–802.CrossRefGoogle ScholarPubMed
Giedd, J.N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021: 77–85.CrossRefGoogle ScholarPubMed
Giedd, J.N., Blumenthal, J., Jeffries, N.O., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2: 861–863.CrossRefGoogle ScholarPubMed
Goldstein, J.M., Seidman, L.J., Horton, N.J., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11: 490–497.CrossRefGoogle ScholarPubMed
Griesinger, W. (1845). Die Pathologie und Therapie der Psychischen Krankheiten für Aerzte und Studirende. Stuttgart: Adolph Krabbe (2nd revised edition published in 1861).Google Scholar
Gur, R.C., Turetsky, B.I., Matsui, M., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. Journal of Neuroscience, 19: 4065–4072.CrossRefGoogle ScholarPubMed
Hadjikhani, N., Joseph, R.M., Snyder, J., Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16: 1276–1282.CrossRefGoogle ScholarPubMed
Hadjikhani, N., Joseph, R.M., Snyder, J., Tager-Flusberg, H. (2007). Abnormal activation of the social brain during face perception in autism. Human Brain Mapping, 28: 441–449.CrossRefGoogle ScholarPubMed
Haier, R.J., Jung, R.E., Yeo, R.A., Head, K., Alkire, M.T. (2005). The neuroanatomy of general intelligence: sex matters. Neuroimage, 25: 320–327.CrossRefGoogle ScholarPubMed
Happé, F., Ronald, A., Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9: 1218–1220.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Minshew, N.J., Keshavan, M.S. (2000). Corpus callosum size in autism. Neurology, 55: 1033–1036.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Minshew, N.J., Harenski, K., Keshavan, M.S. (2001a). Posterior fossa magnetic resonance imaging in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 40: 666–672.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Minshew, N.J., Mallikarjuhn, M., Keshavan, M.S. (2001b). Brain volume in autism. Journal of Child Neurology, 16: 421–424.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Kilpatrick, M., Keshavan, M.S., Minshew, N.J. (2003). Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. Journal of Child Neurology, 18: 317–324.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Jou, R.J., Keshavan, M.S., Varma, R., Minshew, N.J. (2004). Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Research, 131: 263–268.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Girgis, R.R., Adams, J., et al. (2006a). Abnormal brain size effect on the thalamus in autism. Psychiatry Research, 147: 145–151.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Girgis, R.R., Lacerda, A.L., et al. (2006b). Magnetic resonance imaging study of the orbitofrontal cortex in autism. Journal of Child Neurology, 21: 866–871.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Muddasani, S., Vemulapalli, M., Keshavan, M.S., Minshew, N.J. (2006c). An MRI study of increased cortical thickness in autism. American Journal of Psychiatry, 163: 1290–1292.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Girgis, R.R., Adams, J., et al. (2008). Brief report: abnormal association between the thalamus and brain size in Asperger's disorder. Journal of Autism and Developmental Disorders, 38: 390–394.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Libove, R.A., Keshavan, M.S., Melhem, N.M., Minshew, N.J. (2009a). A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biological Psychiatry, 66: 320–326.CrossRefGoogle ScholarPubMed
Hardan, A.Y., Pabalan, M., Gupta, N., et al. (2009b). Corpus callosum volume in children with autism. Psychiatry Research, 174: 57–61.CrossRefGoogle ScholarPubMed
Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Kuroda, Y. (1993). Brainstem and cerebellar vermis involvement in autistic children. Journal of Child Neurology, 8: 149–153.CrossRefGoogle ScholarPubMed
Hashimoto, T., Tayama, M., Murakawa, K., et al. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 25: 1–18.CrossRefGoogle ScholarPubMed
Hazlett, H.C., Poe, M., Gerig, G., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Archives of General Psychiatry, 62: 1366–1376.CrossRefGoogle ScholarPubMed
Hazlett, H.C., Poe, M.D., Gerig, G., Smith, R.G., Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59: 1–6.CrossRefGoogle ScholarPubMed
Haznedar, M.M., Buchsbaum, M.S., Metzger, M., et al. (1997). Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. American Journal of Psychiatry, 154: 1047–1050.Google ScholarPubMed
Haznedar, M.M., Buchsbaum, M.S., Wei, T.C., et al. (2000). Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. American Journal of Psychiatry, 157: 1994–2001.CrossRefGoogle ScholarPubMed
Haznedar, M.M., Buchsbaum, M.S., Hazlett, E.A., et al. (2006). Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. American Journal of Psychiatry, 163: 1252–1263.CrossRefGoogle ScholarPubMed
Herbert, M.R., Harris, G.J., Adrien, K.T., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52: 588–596.CrossRefGoogle ScholarPubMed
Herbert, M.R., Ziegler, D.A., Deutsch, C.K., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126: 1182–1192.CrossRefGoogle ScholarPubMed
Herbert, M.R., Ziegler, D.A., Makris, N., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55: 530–540.CrossRefGoogle ScholarPubMed
Herrington, J.D., Baron-Cohen, S., Wheelwright, S.J., et al. (2007). The role of MT+/V5 during biological motion perception in Asperger Syndrome: An fMRI study. Research in Autism Spectrum Disorders, 1: 14–27.CrossRefGoogle Scholar
Hill, E.L. (2004). Executive dysfunction in autism. Trends in Cognitive Science, 8: 26–32.CrossRefGoogle ScholarPubMed
Hollander, E., Anagnostou, E., Chaplin, W., et al. (2005). Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biological Psychiatry, 58: 226–232.CrossRefGoogle ScholarPubMed
Holttum, J.R., Minshew, N.J., Sanders, R.S., Phillips, N.E. (1992). Magnetic resonance imaging of the posterior fossa in autism. Biological Psychiatry, 32: 1091–1101.CrossRefGoogle ScholarPubMed
Im, K., Lee, J.M., Lee, J., et al. (2006). Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. Neuroimage, 31: 31–38.CrossRefGoogle ScholarPubMed
Johnstone, E.C., Crow, T.J., Frith, C.D., Husband, J., Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 2: 924–926.CrossRefGoogle ScholarPubMed
Johnstone, E.C., Ebmeier, K.P., Miller, P., Owens, D.G., Lawrie, S.M. (2005). Predicting schizophrenia: findings from the Edinburgh High-Risk Study. British Journal of Psychiatry, 186: 18–25.CrossRefGoogle ScholarPubMed
Jou, R.J., Minshew, N.J., Nelhem, N.M., et al. (2009). Brainstem volumetric alterations in children with autism. Psychological Medicine, 39: 1347–1354.CrossRefGoogle ScholarPubMed
Juranek, J., Filipek, P.A., Berenji, G.R., et al. (2006). Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. Journal of Child Neurology, 21: 1051–1058.CrossRefGoogle ScholarPubMed
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2: 217–250.Google Scholar
Kanwisher, N., McDermott, J., Chun, M.M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17: 4302–4311.CrossRefGoogle ScholarPubMed
Ke, X., Hong, S., Tang, T., et al. (2008). Voxel-based morphometry study on brain structure in children with high-functioning autism. Neuroreport, 19: 921–925.CrossRefGoogle ScholarPubMed
Keary, C.J., Minshew, N.J., Bansal, R., et al. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39: 834–841.CrossRefGoogle ScholarPubMed
Keller, T.A., Kana, R.K., Just, M.A. (2007). A developmental study of the structural integrity of white matter in autism. Neuroreport, 18: 23–27.CrossRefGoogle ScholarPubMed
Kennedy, D.P., Glascher, J., Tyszka, J.M., Adolphs, R. (2009). Personal space regulation by the human amygdala. Nature Neuroscience, 12: 1226–1227.CrossRefGoogle ScholarPubMed
Kilian, S., Brown, W.S., Hallam, B.J., et al. (2008). Regional callosal morphology in autism and macrocephaly. Developmental Neuropsychology, 33: 74–99.CrossRefGoogle ScholarPubMed
Kleinhans, N.M., Richards, T., Sterling, L.et al. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131: 1000–1012.CrossRefGoogle ScholarPubMed
Klippel, M., Lhermitte, J. (1909). Un cas de demence precoce a type catatonique, avec autopsie. Revue Neurologique, 17: 157–158.Google Scholar
Kochunov, P., Mangin, J.F., Coyle, T.et al. (2005). Age-related morphology trends of cortical sulci. Human Brain Mapping, 26: 210–220.CrossRefGoogle ScholarPubMed
Korzeniewski, S.J., Birbeck, G., DeLano, M.C., Potchen, M.J., Paneth, N. (2008). A systematic review of neuroimaging for cerebral palsy. Journal of Child Neurology, 23: 216–227.CrossRefGoogle ScholarPubMed
Koshino, H., Kana, R.K., Keller, T.A.et al. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18: 289–300.CrossRefGoogle ScholarPubMed
Krug, D.A., Arick, J.R., Almond, P.J. (1993). Autism Screening Instrument for Educational Planning: an Assessment and Educational Planning System for Autism and Developmental Disabilities, 2nd edn. Austin: Pro-ed.
Kwon, H., Ow, A.W., Pedatella, K.E., Lotspeich, L.J., Reiss, A.L. (2004). Voxel-based morphometry elucidates structural neuroanatomy of high-functioning autism and Asperger syndrome. Developmental Medicine and Child Neurology, 46: 760–764.CrossRefGoogle ScholarPubMed
Kwon, C.H., Luikart, B.W., Powell, C.M., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50: 377–388.CrossRefGoogle ScholarPubMed
Lagae, L. (2000). Cortical malformations: a frequent cause of epilepsy in children. European Journal of Pediatrics, 159: 555–562.CrossRefGoogle ScholarPubMed
Langen, M., Durston, S., Staal, W.G., Palmen, S.J., Engeland, H. (2007). Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biological Psychiatry, 62: 262–266.CrossRefGoogle ScholarPubMed
Lauterbur, P.C. (1979). Medical imaging by nuclear magnetic-resonance zeugmatography. IEEE Transactions on Nuclear Science, 26: 2808–2811.CrossRefGoogle Scholar
Lee, J.E., Bigler, E.D., Alexander, A.L., et al. (2007). Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neuroscience Letters, 424: 127–132.CrossRefGoogle ScholarPubMed
Levitt, J.G., Blanton, R.E., Smalley, S., et al. (2003). Cortical sulcal maps in autism. Cerebral Cortex, 13: 728–735.CrossRefGoogle ScholarPubMed
Lhatoo, S.D., Sander, J.W. (2001). The epidemiology of epilepsy and learning disability. Epilepsia, 42 (Suppl 1): 6–9.CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24: 659–685.CrossRefGoogle ScholarPubMed
Lord, C., Risi, S., Lambrecht, L., et al. (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30: 205–223.CrossRefGoogle ScholarPubMed
Lotspeich, L.J., Kwon, H., Schumann, C.M., et al. (2004). Investigation of neuroanatomical differences between autism and Asperger syndrome. Archives of General Psychiatry, 61: 291–298.CrossRefGoogle ScholarPubMed
Lubman, D.I., Velakoulis, D., McGorry, P.D., et al. (2002). Incidental radiological findings on brain magnetic resonance imaging in first-episode psychosis and chronic schizophrenia. Acta Psychiatrica Scandinavica, 106: 331–336.CrossRefGoogle ScholarPubMed
Machado, M.G., Oliveira, H.A., Cipolotti, R., et al. (2003) [Anatomical and functional abnormalities of central nervous system in autistic disorder: an MRI and SPECT study]. Arquivos de Neuro-Psiquiatria, 61: 957–961.CrossRefGoogle Scholar
Magnotta, V.A., Andreasen, N.C., Schultz, S.K., et al. (1999). Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cerebral Cortex, 9: 151–160.CrossRefGoogle ScholarPubMed
Mallard, J., Hutchison, J.M.S., Edelstein, W., Ling, R., Foster, M. (1979). Imaging by nuclear magnetic-resonance and its biomedical implications. Journal of Biomedical Engineering, 1: 153–160.CrossRefGoogle Scholar
Manes, F., Piven, J., Vrancic, D., et al. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 11: 470–474.CrossRefGoogle ScholarPubMed
Mansfield, P., Maudsley, A.A. (1977). Medical imaging by NMR. British Journal of Radiology, 50: 188–194.CrossRefGoogle Scholar
McAlonan, G.M., Cheung, V., Cheung, C., et al. (2005). Mapping the brain in autism: A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128: 268–276.CrossRefGoogle ScholarPubMed
McAlonan, G.M., Daly, E., Kumari, V., et al. (2002). Brain anatomy and sensorimotor gating in Asperger's syndrome. Brain, 125: 1594–1606.CrossRefGoogle ScholarPubMed
Mosconi, M.W., Cody-Hazlett, H., Poe, M.D., et al. (2009). Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Archives of General Psychiatry, 66: 509–516.CrossRefGoogle ScholarPubMed
Mraz, K.D., Green, J., Dumont-Mathieu, T., Makin, S., Fein, D. (2007). Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. Journal of Child Neurology, 22: 700–713.CrossRefGoogle ScholarPubMed
Nacewicz, B.M., Dalton, K.M., Johnstone, T., et al. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63: 1417–1428.CrossRefGoogle ScholarPubMed
Nopoulos, P., Swayze, V., Flaum, M., et al. (1997). Cavum septi pellucidi in normals and patients with schizophrenia as detected by magnetic resonance imaging. Biological Psychiatry, 41: 1102–1108.CrossRefGoogle ScholarPubMed
Nopoulos, P., Flaum, M., O'Leary, D., Andreasen, N.C. (2000). Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research, 98: 1–13.CrossRefGoogle ScholarPubMed
Nordahl, C.W., Dierker, D., Mostafavi, I., et al. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. Journal of Neuroscience, 27: 11725–11735.CrossRefGoogle ScholarPubMed
Ong, B., Bergin, P., Heffernan, T., Stuckey, S. (2009). Transient seizure-related MRI abnormalities. Journal of Neuroimaging, 19: 301–310.CrossRefGoogle ScholarPubMed
Palmen, S.J., Hulshoff Pol, H.E., Kemner, C., et al. (2004). Larger brains in medication naive high-functioning subjects with pervasive developmental disorder. Journal of Autism and Developmental Disorders, 34: 603–613.CrossRefGoogle ScholarPubMed
Palmen, S.J., Hulshoff Pol, H.E., Kemner, C., et al. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35: 561–570.CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P.D., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361: 281–288.CrossRefGoogle ScholarPubMed
Papez, J.W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38: 725–743.CrossRefGoogle Scholar
Pelphrey, K.A., Morris, J.P., McCarthy, G. (2005). Neural basis of eye gaze processing deficits in autism. Brain, 128: 1038–1048.CrossRefGoogle ScholarPubMed
Pierce, K., Muller, R.A., Ambrose, J., Allen, G., Courchesne, E. (2001). Face processing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain, 124: 2059–2073.CrossRefGoogle ScholarPubMed
Pinkham, A.E., Hopfinger, J.B., Pelphrey, K.A., Piven, J., Penn, D.L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia Research, 99: 164–175.CrossRefGoogle ScholarPubMed
Piven, J., Berthier, M.L., Starkstein, S.E., et al. (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. American Journal of Psychiatry, 147: 734–739.Google ScholarPubMed
Piven, J., Arndt, S., Bailey, J.et al. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152: 1145–1149.Google ScholarPubMed
Piven, J., Bailey, J., Ranson, B.J., Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154: 1051–1056.Google ScholarPubMed
Pugliese, L., Catani, M., Ameis, S., et al. (2009). The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study. Neuroimage, 47: 427–434.CrossRefGoogle ScholarPubMed
Redcay, E., Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58: 1–9.CrossRefGoogle ScholarPubMed
Rojas, D.C., Bawn, S.D., Benkers, T.L., Reite, M.L., Rogers, S.J. (2002). Smaller left hemisphere planum temporale in adults with autistic disorder. Neuroscience Letters, 328: 237–240.CrossRefGoogle ScholarPubMed
Rojas, D.C., Smith, J.A., Benkers, T.L., et al. (2004). Hippocampus and amygdala volumes in parents of children with autistic disorder. American Journal of Psychiatry, 161: 2038–2044.CrossRefGoogle ScholarPubMed
Rojas, D.C., Camou, S.L., Reite, M.L., Rogers, S.J. (2005). Planum temporale volume in children and adolescents with autism. Journal of Autism and Developmental Disorders, 35: 479–486.CrossRefGoogle ScholarPubMed
Rojas, D.C., Peterson, E., Winterrowd, E., et al. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6: 56.CrossRefGoogle ScholarPubMed
Ronald, A., Edelson, L.R., Asherson, P., Saudino, K.J. (2010). Exploring the relationship between autistic-like traits and ADHD behaviors in early childhood: findings from a community twin study of 2-year-olds. Journal of Abnormal Child Psychology, 38: 185–196.CrossRefGoogle ScholarPubMed
Salmond, C.H., Ashburner, J., Connelly, A., et al. (2005). The role of the medial temporal lobe in autistic spectrum disorders. European Journal of Neuroscience, 22: 764–772.CrossRefGoogle ScholarPubMed
Salmond, C.H., Vargha-Khadem, F., Gadian, D.G., Haan, M., Baldeweg, T. (2007). Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: evidence from ERP and MRI. Cortex, 43: 686–699.CrossRefGoogle ScholarPubMed
Schaefer, G.B., Bodensteiner, J.B. (1999). Developmental anomalies of the brain in mental retardation. International Review of Psychiatry, 11: 47–55.CrossRefGoogle Scholar
Schifter, T., Hoffman, J.M., Hatten, H.P., et al. (1994). Neuroimaging in infantile autism. Journal of Child Neurology, 9: 155–161.CrossRefGoogle ScholarPubMed
Schmahmann, J.D., Sherman, J.C. (1998). The cerebellar cognitive affective syndrome. Brain, 121: 561–579.CrossRefGoogle ScholarPubMed
Schmitz, N., Rubia, K., Amelsvoort, T., et al. (2008). Neural correlates of reward in autism. British Journal of Psychiatry, 192: 19–24.CrossRefGoogle ScholarPubMed
Schumann, C.M., Amaral, D.G. (2006). Stereological analysis of amygdala neuron number in autism. Journal of Neuroscience, 26: 7674–7679.CrossRefGoogle ScholarPubMed
Schumann, C.M., Hamstra, J., Goodlin-Jones, B.L., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24: 6392–6401.CrossRefGoogle Scholar
Schumann, C.M., Barnes, C.C., Lord, C., Courchesne, E. (2009). Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biological Psychiatry, 66: 942–949.CrossRefGoogle ScholarPubMed
Sears, L.L., Vest, C., Mohamed, S., et al. (1999). An MRI study of the basal ganglia in autism. Progress in Neuropsychopharmacology and Biological Psychiatry, 23: 613–624.CrossRefGoogle ScholarPubMed
Shaw, P., Lawrence, E.J., Radbourne, C., et al. (2004). The impact of early and late damage to the human amygdala on ‘theory of mind’ reasoning. Brain, 127: 1535–1548.CrossRefGoogle ScholarPubMed
Simonoff, E., Pickles, A., Charman, T., et al. (2008). Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child and Adolescent Psychiatry, 47: 921–929.CrossRefGoogle Scholar
Sowell, E.R., Thompson, P.M., Welcome, S.E., et al. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362: 1699–1707.CrossRefGoogle ScholarPubMed
Sparks, B.F., Friedman, S.D., Shaw, D.W., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59: 184–192.CrossRefGoogle ScholarPubMed
Spencer, M.D., Gibson, R.J., Moorhead, T.W.J., et al. (2005). Qualitative assessment of brain anomalies in adolescents with mental retardation. American Journal of Neuroradiology, 26: 2691–2697.Google ScholarPubMed
Spencer, M.D., Moorhead, T.W.J., Lymer, G.K.S., et al. (2006). Structural correlates of intellectual impairment and autistic features in adolescents. Neuroimage, 33: 1136–1144.CrossRefGoogle ScholarPubMed
Stanfield, A.C., McIntosh, A.M., Spencer, M.D., et al. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Journal of Psychiatry, 23: 289–299.CrossRefGoogle ScholarPubMed
Sundaram, S.K., Kumar, A., Makki, M.I., et al. (2008). Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cerebral Cortex, 18: 2659–2665.CrossRefGoogle ScholarPubMed
Taber, K.H., Shaw, J.B., Loveland, K.A., et al. (2004). Accentuated Virchow-Robin spaces in the centrum semiovale in children with autistic disorder. Journal of Computer Assisted Tomography, 28: 263–268.CrossRefGoogle ScholarPubMed
Thakkar, K.N., Polli, F.E., Joseph, R.M., et al. (2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain, 131: 2464–2478.CrossRefGoogle Scholar
Toro, R., Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex, 15: 1900–1913.CrossRefGoogle ScholarPubMed
Tsai, L.Y., Beisler, J.M. (1983). The development of sex differences in infantile autism. British Journal of Psychiatry, 142: 373–378.CrossRefGoogle ScholarPubMed
Tsai, L., Stewart, M.A., August, G. (1981). Implication of sex differences in the familial transmission of infantile autism. Journal of Autism and Developmental Disorders, 11: 165–173.CrossRefGoogle ScholarPubMed
Tsatsanis, K.D., Rourke, B.P., Klin, A., et al. (2003). Reduced thalamic volume in high-functioning individuals with autism. Biological Psychiatry, 53: 121–129.CrossRefGoogle ScholarPubMed
Heuvel, O.A., Veltman, D.J., Groenewegen, H.J., et al. (2005). Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Archives of General Psychiatry, 62: 301–309.CrossRefGoogle ScholarPubMed
Karnebeek, C.D., Jansweijer, M.C., Leenders, A.G., Offringa, M., Hennekam, R.C. (2005). Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. European Journal of Human Genetics, 13: 6–25.CrossRefGoogle ScholarPubMed
Vidal, C.N., Nicolson, R., DeVito, T.J., et al. (2006). Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biological Psychiatry, 60: 218–225.CrossRefGoogle ScholarPubMed
Waiter, G.D., Williams, J.H., Murray, A.D., et al. (2004). A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage, 22: 619–625.CrossRefGoogle ScholarPubMed
Waiter, G.D., Williams, J.H., Murray, A.D., et al. (2005). Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage, 24: 455–461.CrossRefGoogle ScholarPubMed
Wernicke, C. (1881). Lehrbuch der Gehirnkrankheiten. Kassel, Germany: Theodore Fischer.Google Scholar
Williams, J.H., Waiter, G.D., Gilchrist, A., et al. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44: 610–621.CrossRefGoogle ScholarPubMed
Witelson, S.F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain, 112: 799–835.CrossRefGoogle ScholarPubMed
Zeegers, M., Grond, J., Durston, S., et al. (2006). Radiological findings in autistic and developmentally delayed children. Brain and Development, 28: 495–499.CrossRefGoogle ScholarPubMed
Zilbovicius, M., Meresse, I., Chabane, N., et al. (2006). Autism, the superior temporal sulcus and social perception. Trends in Neuroscience, 29: 359–366.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×