Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T22:16:57.607Z Has data issue: false hasContentIssue false

30 - Neutron, Gamma-Ray, and X-Ray Spectroscopy of Planetary Bodies

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

This chapter provides a brief review of missions using X-ray, gamma-ray, and neutron spectroscopy to determine the chemical composition of planetary surfaces. This chapter presents the history of planetary radiation measurements, including significant discoveries. Summary tables with links to the archived data provide a resource for readers interested in working in this field. Upcoming missions and possible future directions are described.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 588 - 603
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, I., Trombka, J., Gerard, J., et al. (1972a) The Apollo 15 X-ray fluorescence experiment. Science, 175, 436440.Google Scholar
Adler, I., Trombka, J., Gerard, J., et al. (1972b) Apollo 15 Geochemical X-ray Fluorescence experiment: Preliminary report. Science, 175, 436440.Google Scholar
Adler, I., Trombka, J.I., Yin, L.I., Gorenstein, P., Bjorkholm, P., & Gerard, J. (1973a) Lunar composition from Apollo orbital measurements. Naturwissenschaften, 60, 231242.Google Scholar
Adler, I., Trombka, J.I., Lowman, P., et al. (1973b) Apollo 15 and 16 results of the integrated geochemical experiment. The Moon, 7, 487504.Google Scholar
Adler, I., Podwysocki, M., Andre, C.G., et al. (1974) The role of horizontal transport as evaluated from the Apollo 15 and 16 orbital experiments. Proceedings of the 5th Lunar Sci. Conf., 975–979.Google Scholar
Andre, C.G., Bielefeld, M.J., Elaison, E., Soderblom, L.A., Adler, I., & Philpotts, J.A. (1977) Lunar surface chemistry: A new imaging technique. Science, 197, 986989.Google Scholar
Andre, C.G., Wolfe, R., & Adler, I. (1978) Evidence for a high-magnesium subsurface basalt in Mare Crisium from orbital X-ray fluorescence data. Mare Crisium: The View from Luna 24, 112.Google Scholar
Arai, T., Okada, T., Yamamoto, Y., Ogawa, K., Shirai, K., & Kato, M. (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth, Planets and Space, 60, 2131.Google Scholar
Arnold, J.R., Metzger, A.E., Anderson, E.C., & Van Dilla, M.A. (1962) Gamma rays in space, Ranger 3. Journal of Geophysical Research, 67, 48784880.Google Scholar
Arvidson, R.E., Bonitz, R.G., Robinson, M.L., et al. (2009) Results from the Mars Phoenix Lander Robotic Arm experiment. Journal of Geophysical Research, 114, DOI:10.1029/2009je003408.Google Scholar
Athiray, P.S., Narendranath, S., Sreekumar, P., & Grande, M. (2014) C1XS results: First measurement of enhanced sodium on the lunar surface. Planetary and Space Science, 104, 279287.Google Scholar
Ban, C., Zheng, Y., Zhu, Y., Zhang, F., Xu, L., & Zou, Y. (2014) Research on the inversion of elemental abundances from Chang’E-2 X-ray spectrometry data. Chinese Journal of Geochemistry, 33, 289299.CrossRefGoogle Scholar
Bielefeld, M.J., Reedy, R.C., Metzger, A.E., Trombka, J., & Arnold, J.R. (1976) Surface chemistry of selected lunar regions. Proceedings of the 7th Lunar Sci. Conf., 2661–2676.Google Scholar
Boynton, W., Feldman, W., Squyres, S., et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185.Google Scholar
Boynton, W., Feldman, W., Mitrofanov, I., et al. (2004) The Mars Odyssey gamma-ray spectrometer instrument suite. Space Science Reviews, 110, 37–83.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2007je002887.Google Scholar
Byrne, S., Dundas, C.M., Kennedy, M.R., et al. (2009) Distribution of mid-latitude ground ice on Mars from new impact craters. Science, 325, 16741676.Google Scholar
Davis, P.A. (1980) Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models. Journal of Geophysical Research, 85, 32093224.Google Scholar
Dong, W.-D., Zhang, X.-P., Zhu, M.-H., Xu, A.-A., & Tang, Z.-S. (2016) Global Mg/Si and Al/Si distributions on the lunar surface derived from Chang’E-2 X-ray Spectrometer. Research in Astronomy and Astrophysics, 16(4), DOI:10.1088/1674–4527/16/1/004.Google Scholar
Dundas, C.M., Byrne, S., McEwen, A.S., et al. (2014) HiRISE observations of new impact craters exposing martian ground ice. Journal of Geophysical Research, 119, 109127.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (1998) Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data. Science, 281, 14931496.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2000) Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. Journal of Geophysical Research, 105, 20,33320,345.Google Scholar
Evans, L.G., Starr, R.D., Brückner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics and Planetary Science, 36, 16391660.Google Scholar
Evans, L.G., Peplowski, P.N., Rhodes, E.A., et al. (2012) Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004178.Google Scholar
Evans, L.G., Peplowski, P.N., McCubbin, F.M., et al. (2015) Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Feldman, W.C., Lawrence, D.J., Elphic, R.C., Vaniman, D.T., Thomsen, D.R., & Barraclough, B.L. (2000) Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research, 105, 20,34720,363.Google Scholar
Feldman, W.C., Maurice, S., Lawrence, D.J., et al. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research, 106, 23,23123,251.CrossRefGoogle Scholar
Feldman, W.C., Boynton, W.V., Tokar, R.L., et al. (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science, 297, 7578.Google Scholar
Feldman, W., Head, J., Maurice, S., et al. (2004a) Recharge mechanism of near-equatorial hydrogen on Mars: Atmospheric redistribution or sub-surface aquifer. Geophysical Research Letters, 31, L18701, DOI:10.1029/2004GL020661.Google Scholar
Feldman, W., Mellon, M., Maurice, S., et al. (2004b) Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophysical Research Letters, 31, L16702, DOI:10.1029/2004GL020181.Google Scholar
Feldman, W.C., Ahola, K., Barraclough, B.L., et al. (2004c) Gamma-ray, neutron, and alpha-particle spectrometers for the Lunar Prospector mission. Journal of Geophysical Research, 109, E07S06, DOI:10.1029/2003JE002207.Google Scholar
Feldman, W.C., Prettyman, T.H., Maurice, S., et al. (2004d) Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002160.Google Scholar
Fraser, G.W., Carpenter, J.D., Rothery, D.A., et al. (2010) The Mercury Imaging X-ray Spectrometer (MIXS) on bepicolombo. Planetary and Space Science, 58, 7995.Google Scholar
Gasnault, O., Feldman, W.C., Maurice, S., et al. (2001) Composition from fast neutrons: Application to the Moon. Geophysical Research Letters, 28, 37973800.CrossRefGoogle Scholar
Glodo, J., Higgins, W.M., van Loef, E.V.D., & Shah, K.S. (2008) Scintillation properties of 1 Inch Cs2LiYCl6: CeCrystals. IEEE Transactions on Nuclear Science, 55, 12061209.Google Scholar
Goldsten, J.O., Mcnutt, R.L., Gold, R.E., et al. (1997) The X-ray/gamma-ray spectrometer on the Near Earth Asteroid Rendezvous Mission. In: The near Earth asteroid rendezvous mission (C.T. Russell, ed.). Springer, Dordrecht, 169–216.Google Scholar
Goldsten, J.O., Rhodes, E.A., Boynton, W.V., et al. (2007) The MESSENGER gamma-ray and neutron spectrometer. Space Science Reviews, 131, 339391.Google Scholar
Grande, M., Kellett, B.J., Howe, C., et al. (2007) The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon: First results. Planetary and Space Science, 55, 494502.Google Scholar
Haines, E.L. & Metzger, A.E. (1980) Lunar highland crustal models based on iron concentrations: Isostasy and center-of-mass displacement. Proceedings of the 11th Lunar Planet. Sci. Conf., 689–718.Google Scholar
Haines, E.L., Etchegaray-Ramirez, M.I., & Metzger, A.E. (1978) Thorium concentrations in the lunar surface. II: Deconvolution modeling and its application to the regions of Aristarchus and Mare Smythii. Proceedings of the 9th Lunar Planet. Sci. Conf., 2985–3013.Google Scholar
Hardgrove, C., West, S.T., Heffern, L.E., et al. (2018) Development of the Miniature Neutron Spectrometer for the Lunar Polar Hydrogen Mapper mission. 49th Lunar Planet. Sci. Conf., Abstract #2341.Google Scholar
Harrington, T.M., Marshall, J.H., Arnold, J.R., Peterson, L.E., Trombka, J.I., & Metzger, A.E. (1974) The Apollo gamma-ray spectrometer. Nuclear Instruments and Methods, 118, 401411.Google Scholar
Hasebe, N., Shibamura, E., Miyachi, T., et al. (2008) Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE. Earth, Planets and Space, 60, 299312.Google Scholar
Kelly, N.J., Boynton, W.V., Kerry, K., et al. (2006) Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution. Journal of Geophysical Research, 112, DOI:10.1029/2006je002678.Google Scholar
Kozyrev, A., Mitrofanov, I., Owens, A., et al. (2016) A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications. Review of Scientific Instruments, 87(8), 085112. DOI:10.1063/1.4958897.Google Scholar
Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al. (1998) Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer. Science, 281, 14841489.Google Scholar
Lawrence, D.J., Feldman, W., Elphic, R., et al. (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. Journal of Geophysical Research, 107, 5130.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2010) Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.CrossRefGoogle Scholar
Lawrence, D.J., Peplowski, P.N., Prettyman, T.H., et al. (2013a) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s Gamma Ray and Neutron Detector. Meteoritics and Planetary Science, 48, 22712288.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, W.C., et al. (2013b) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.Google Scholar
Lawrence, D.J., Peplowski, P.N., Goldsten, J.O., et al. (2016) The Psyche gamma-ray and neutron spectrometer: Characterizing the composition of a metal-rich body using nuclear spectroscopy. 47th Lunar Planet. Sci. Conf., Abstract #1622.Google Scholar
Lim, L.F. & Nittler, L.R.J.I. (2009) Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data. Icarus, 200, 129146.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hess, W.N. (1961) The lunar neutron flux. Journal of Geophysical Research, 66, 26652671.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hampel, V.E. (1972) The lunar neutron flux revisited. Earth and Planetary Science Letters, 16, 355369.Google Scholar
Litvak, M., Mitrofanov, I., Kozyrev, A., et al. (2006) Comparison between polar regions of Mars from HEND/Odyssey data. Icarus, 180, 2337.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Barmakov, Y.N., et al. (2008) The Dynamic Albedo of Neutrons (DAN) experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology, 8, 605612.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Sanin, A., et al. (2012) Global maps of lunar neutron fluxes from the LEND instrument. Journal of Geophysical Research, 117, DOI:10.1029/2011JE003949.CrossRefGoogle Scholar
Litvak, M.L., Mitrofanov, I.G., Hardgrove, C., et al. (2016) Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research, 121, 836845.Google Scholar
Mandel’shtam, S.L., Tindo, I.T., & Karev, V.I. (1966) Investigation of lunar X-Ray emission with the help of the lunar satellite Luna-10. Kosmicheskie Issledovaniia, 4, 827837.Google Scholar
Mandel’shtam, S.L., Tindo, I.P., Cheremukhin, G.S., Sorokin, L.S., & Dmitriev, A.B. (1968) X radiation of the Moon and X-ray cosmic background in the lunar Sputnik Luna-12. Kosmicheskie Issledovaniia, 6, 119127.Google Scholar
Masterson, R.A., Chodas, M., Bayley, L., et al. (2018) Regolith X-Ray Imaging Spectrometer (REXIS) aboard the OSIRIS-REx asteroid sample return mission. Space Science Reviews, 214, 48. DOI:10.1007/s11214-018-0483-8.Google Scholar
Maurice, S., Lawrence, D.J., Feldman, W.C., Elphic, R.C., & Gasnault, O. (2004) Reduction of neutron data from Lunar Prospector. Journal of Geophysical Research, 109, E07S04, DOI:10.1029/2003JE002208.Google Scholar
McSween, H.Y., Jr., Taylor, G.J., & Wyatt, M.B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Mellon, M.T., Feldman, W.C., & Prettyman, T.H. (2004) The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324340.Google Scholar
Metzger, A.E. & Parker, R.E. (1979) The distribution of titanium on the lunar surface. Earth and Planetary Science Letters, 45, 155171.Google Scholar
Metzger, A.E., Anderson, E.C., Van Dilla, M.A., & Arnold, J.R. (1964) Detection of an interstellar flux of gamma rays. Nature, 204, 766767.Google Scholar
Metzger, A.E., Haines, E., Parker, R., & Radocinski, R. (1977) Thorium concentrations in the lunar surface. I-Regional values and crustal content. Proceedings of the 10th Lunar Sci. Conf., 10, 949–999.Google Scholar
Metzger, A.E., Haines, E., Etchegaray-Ramirez, M., & Hawke, B. (1979) Thorium concentrations in the lunar surface. III-Deconvolution of the Apenninus region. Proceedings of the 10th Lunar Planet. Sci. Conf., 1701–1718.Google Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al. (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science, 297, 7881.Google Scholar
Naito, M., Hasebe, N., Nagaoka, H., et al. (2018) Iron distribution of the Moon observed by the Kaguya gamma-ray spectrometer: Geological implications for the south pole-Aitken basin, the Orientale basin, and the Tycho crater. Icarus, 310, 2131.Google Scholar
Narendranath, S., Athiray, P.S., Sreekumar, P., et al. (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214, 5366.Google Scholar
Nittler, L.R., Starr, R.D., Lev, L., et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science, 36, 16731695.Google Scholar
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Okada, T., Shirai, K., Yamamoto, Y., et al. (2009) X-ray fluorescence spectrometry of Lunar Surface by XRS onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 7, Tk_39–Tk_42.Google Scholar
Peng, W.-X., Wang, H.-Y., Zhang, C.-M., et al. (2009) Prospective results of CHANG’E-2 X-ray spectrometer. Chinese Physics C, 33(10), 819825.Google Scholar
Peplowski, P.N., Evans, L.G., Hauck, S.A., et al. (2011) Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P.N., Rhodes, E.A., Hamara, D.K., et al. (2012) Aluminum abundance on the surface of Mercury: Application of a new background-reduction technique for the analysis of gamma-ray spectroscopy data. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004181.Google Scholar
Peplowski, P.N., Lawrence, D.J., Prettyman, T.H., et al. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays. Meteoritics and Planetary Science, 48, 22522270.Google Scholar
Peplowski, P.N., Bazell, D., Evans, L.G., Goldsten, J.O., Lawrence, D.J., & Nittler, L.R. (2015) Hydrogen and major element concentrations on 433 Eros: Evidence for an L- or LL-chondrite-like surface composition. Meteoritics and Planetary Science, 50, 353367.Google Scholar
Peplowski, P.N., Klima, R.L., Lawrence, D.J., et al. (2016) Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience, 9, 273276.Google Scholar
Prettyman, T.H., Feldman, W., Mellon, M., et al. (2004) Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. Journal of Geophysical Research, 109, DOI:10.1029/2003je002139.Google Scholar
Prettyman, T.H., Hagerty, J.J., Elphic, R.C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007, DOI:10.1029/2005JE002656.Google Scholar
Prettyman, T.H., Feldman, W.C., & Titus, T.N. (2009) Characterization of Mars’ seasonal caps using neutron spectroscopy. Journal of Geophysical Research, 114, 10.1029/2008je003275.Google Scholar
Prettyman, T.H., Feldman, W.C., McSween, H.Y., Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 48, 22112236.Google Scholar
Prettyman, T.H., Yamashita, N., Lambert, J.L., Stassun, K.G., & Raymond, C.A. (2015a) Ultra-bright scintillators for planetary gamma-ray spectroscopy. SPIE Newsroom, DOI:10.1117/2.1201510.006162.Google Scholar
Prettyman, T.H., Yamashita, N., Reedy, R.C., et al. (2015b) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Prettyman, T.H., Yamashita, N., Toplis, M.J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T.H., Yamashita, N., Ammannito, E., et al. (2019a) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T.H., Yamashita, N., Landis, M.E., et al. (2019b) Dawn’s GRaND finale: High spatial-resolution elemental measurements reveal an anomaly at Occator crater. 50th Lunar Planet. Sci. Conf., Abstract #1356.Google Scholar
Sprague, A.L., Boynton, W.V., Kerry, K.E., et al. (2007) Mars’ atmospheric argon: Tracer for understanding martian atmospheric circulation and dynamics. Journal of Geophysical Research, 112, DOI:10.1029/2005je002597.Google Scholar
Surkov, Y.A., Moskalyova, L.P., Manvelyan, O.S., Basilevsky, A.T., & Kharyukova, V.P. (1980), Geochemical interpretation of the results of measuring gamma-radiation of Mars. Proceedings of the 11th Lunar Planet. Sci. Conf., 669–676.Google Scholar
Surkov, Y.A. (1984) Nuclear-physical methods of analysis in lunar and planetary investigations. Isotopenpraxis Isotopes in Environmental and Health Studies, 20, 321329.Google Scholar
Surkov, Y.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., & Sobornov, O.P. (1987) Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, 92, E537E540.Google Scholar
Surkov, Y.A., Barsukov, V.L., Moskaleva, L.P., et al. (1989) Determination of the elemental composition of martian rocks from Phobos 2. Nature, 341, 595598.Google Scholar
Toplis, M.J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics and Planetary Science, 48, 23002315.Google Scholar
Vander Kaaden, K.E., McCubbin, F.M., Nittler, L.R., et al. (2017) Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168.Google Scholar
Weider, S.Z., Kellett, B.J., Swinyard, B., et al. (2012) The Chandrayaan-1 X-ray Spectrometer: First results. Planetary and Space Science, 60, 217228.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., McCoy, T.J., & Solomon, S.C. (2014) Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Murchie, S.L., et al. (2016) Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophysical Research Letters, 43, 36533661.Google Scholar
Yamashita, N., Hasebe, N., Reedy, R.C., et al. (2010) Uranium on the Moon: Global distribution and U/Th ratio. Geophysical Research Letters, 37, L10201, DOI:10.1029/2010GL043061.Google Scholar
Yamashita, N., Gasnault, O., Forni, O., et al. (2012) The global distribution of calcium on the Moon: Implications for high-Ca pyroxene in the eastern mare region. Earth and Planetary Science Letters, 353354, 9398.Google Scholar
Yamashita, N., Prettyman, T.H., Mittlefehldt, D.W., et al. (2013) Distribution of iron on Vesta. Meteoritics and Planetary Science, 48, 22372251.Google Scholar
Yin, L.I., Trombka, J.I., Adler, I., & Bielefeld, M. (1993) X-ray remote sensing techniques for geochemical analysis of planetary surfaces. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 199212.Google Scholar
Zhang, C., Lechner, P., Lutz, G., et al. (2006) Development of DEPFET Macropixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568, 207216.Google Scholar
Zhu, M.H., Ma, T., & Chang, J. (2010) Chang’E-1 gamma ray spectrometer and preliminary radioactive results on the lunar surface. Planetary and Space Science, 58, 15471554.Google Scholar
Zhu, M.H., Chang, J., Ma, T., et al. (2013) Potassium map from Chang’E-2 constraints the impact of Crisium and Orientale basin on the Moon. Scientific Reports, 3, 1611, DOI:10.1038/srep01611.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×