Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T10:00:03.643Z Has data issue: false hasContentIssue false

12 - Structure formation and gravitational lensing

from Part 3 - The standard model and extensions

Published online by Cambridge University Press:  05 April 2012

George F. R. Ellis
Affiliation:
University of Cape Town
Roy Maartens
Affiliation:
University of Portsmouth and The University of the Western Cape
Malcolm A. H. MacCallum
Affiliation:
University of Bristol
Get access

Summary

The primordial seeds of inhomogeneity, whose imprint is seen at last scattering in the CMB anisotropies, may be generated by quantum fluctuations during inflation in the very early universe. These seeds subsequently evolve from linear to nonlinear fluctuations via gravitational instability, and produce the large-scale matter distribution that is observed at lower redshifts. The previous chapter dealt with the CMB anisotropies. In this chapter we provide brief overviews of the primordial fluctuations from inflation, and then of the evolution of large-scale structure, as described via the power spectrum of matter. A key probe of the total matter (dark and baryonic) and its distribution is weak gravitational lensing by the large-scale structure of light from distant sources. We develop the theoretical framework for gravitational lensing and briefly describe how this is applied in cosmology. The following chapter will draw on this chapter and its predecessors to show how current observations constrain and describe the standard model of cosmology. We start with a summary of the statistical description of perturbations.

Correlation functions and power spectra

Perturbations on an FLRW background are treated as random variables in space at each time instant, and observations determine the statistical properties of these random distributions. (See Durrer (2008) for a more complete discussion.) A perturbative variable A(x) at some fixed time is associated with an ensemble of random functions, each with a probability assigned to it. We define the 2-point correlation function 〈A(x)A(x′)〉 as the average over the ensemble (incorporating the probability distribution).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×