Published online by Cambridge University Press: 10 November 2010
Abstract
We calculate the value distribution of the first derivative of characteristic polynomials of matrices from SO(2N + 1) at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. The connection between the values of random matrix characteristic polynomials and values of the L-functions of families of elliptic curves implies that this calculation in random matrix theory is relevant to the problem of predicting the frequency of rank three curves within these families, since the Birch and Swinnerton-Dyer conjecture relates the value of an L-function and its derivatives to the rank of the associated elliptic curve. This article is based on a talk given at the Isaac Newton Institute for Mathematical Sciences during the “Clay Mathematics Institute Special Week on Ranks of Elliptic Curves and Random Matrix Theory”.
Introduction
Random matrix theory and number theory
The connection between random matrix theory and number theory began with the work of Montgomery when he conjectured that the distribution of the complex zeros of the Riemann zeta function follows the same statistics as the eigenvalues of a random matrix chosen from U(N) generated uniformly with respect to Haar measure. This conjecture is supported by numerical evidence and also by further work suggesting that the same conjecture is true for more general L-functions. For all these L-functions there is a Generalized Riemann Hypothesis that the non-trivial zeros lie on a vertical line in the complex plane.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.