Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Monoidal and Braided Categories
- 2 Algebras and Coalgebras in Monoidal Categories
- 3 Quasi-bialgebras and Quasi-Hopf Algebras
- 4 Module (Co)Algebras and (Bi)Comodule Algebras
- 5 Crossed Products
- 6 Quasi-Hopf Bimodule Categories
- 7 Finite-Dimensional Quasi-Hopf Algebras
- 8 Yetter–Drinfeld Module Categories
- 9 Two-sided Two-cosided Hopf Modules
- 10 Quasitriangular Quasi-Hopf Algebras
- 11 Factorizable Quasi-Hopf Algebras
- 12 The Quantum Dimension and Involutory Quasi-Hopf Algebras
- 13 Ribbon Quasi-Hopf Algebras
- Bibliography
- Index
11 - Factorizable Quasi-Hopf Algebras
Published online by Cambridge University Press: 21 February 2019
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Monoidal and Braided Categories
- 2 Algebras and Coalgebras in Monoidal Categories
- 3 Quasi-bialgebras and Quasi-Hopf Algebras
- 4 Module (Co)Algebras and (Bi)Comodule Algebras
- 5 Crossed Products
- 6 Quasi-Hopf Bimodule Categories
- 7 Finite-Dimensional Quasi-Hopf Algebras
- 8 Yetter–Drinfeld Module Categories
- 9 Two-sided Two-cosided Hopf Modules
- 10 Quasitriangular Quasi-Hopf Algebras
- 11 Factorizable Quasi-Hopf Algebras
- 12 The Quantum Dimension and Involutory Quasi-Hopf Algebras
- 13 Ribbon Quasi-Hopf Algebras
- Bibliography
- Index
Summary
We introduce the notion of factorizable quasi-Hopf algebra by using a categorical point of view. We show that the quantum double D(H) of any finite-dimensional quasi-Hopf algebra H is factorizable, and we characterize D(H) when H itself is factorizable. Finally, we prove that any finite-dimensional factorizable quasi-Hopf algebra is unimodular. In particular, we obtain that the quantum double D(H) is a unimodular quasi-Hopf algebra.
- Type
- Chapter
- Information
- Quasi-Hopf AlgebrasA Categorical Approach, pp. 407 - 450Publisher: Cambridge University PressPrint publication year: 2019