Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T08:53:27.775Z Has data issue: false hasContentIssue false

5 - Quantum feedback control

Published online by Cambridge University Press:  17 February 2011

Howard M. Wiseman
Affiliation:
Griffith University, Queensland
Gerard J. Milburn
Affiliation:
University of Queensland
Get access

Summary

Introduction

In the preceding chapter we introduced quantum trajectories: the evolution of the state of a quantum system conditioned on monitoring its outputs. As discussed in the preface, one of the chief motivations for modelling such evolution is for quantum feedback control. Quantum feedback control can be broadly defined as follows. Consider a detector continuously producing an output, which we will call a current. Feedback is any process whereby a physical mechanism makes the statistics of the present current at a later time depend upon the current at earlier times. Feedback control is feedback that has been engineered for a particular purpose, typically to improve the operation of some device. Quantum feedback control is feedback control that requires some knowledge of quantum mechanics to model. That is, there is some part of the feedback loop that must be treated (at some level of sophistication) as a quantum system. There is no implication that the whole apparatus must be treated quantum mechanically.

The structure of this chapter is as follows. The first quantum feedback experiments (or at least the first experiments specifically identified as such) were done in the mid 1980s by two groups [WJ85a, MY86]. They showed that the photon statistics of a beam of light could be altered by feedback. In Section 5.2 we review such phenomena and give a theoretical description using linearized operator equations. Section 5.3 considers the changes that arise when one allows the measurement to involve nonlinear optical processes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×