Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T14:54:27.987Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 February 2017

Mark M. Wilde
Affiliation:
Louisiana State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeyesinghe, A (2006), ‘Unification of Quantum Information Theory’, PhD thesis, California Institute of Technology.
Abeyesinghe, A., Devetak, I, Hayden, P & Winter, A (2009), ‘The mother of all protocols: Restructuring quantum information's family tree ’, Proceedings of the Royal Society A 465(2108), 2537–2563. arXiv:quant-ph/0606225.Google Scholar
Abeyesinghe, A & Hayden, P (2003), ‘Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication’, Physical Review A 68(6), 062319. arXiv:quant-ph/0308143.Google Scholar
Adami, C & Cerf, N. J (1997), ‘von Neumann capacity of noisy quantum channels’, Physical Review A 56(5), 3470–3483. arXiv:quant-ph/9609024.Google Scholar
Aharonov, D & Ben-Or, M. (1997), ‘Fault-tolerant quantum computation with constant error’, in STOC ‘97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, ACM, New York, NY, pp. 176–188. arXiv:quant-ph/9906129.
Ahlswede, R & Winter, A (2002), ‘Strong converse for identification via quantum channels’, IEEE Transactions on Information Theory 48(3), 569–579. arXiv:quantph/0012127.Google Scholar
Ahn, C., Doherty, A, Hayden, P & Winter, A (2006), ‘On the distributed compression of quantum information’, IEEE Transactions on Information Theory 52(10), 4349–4357. arXiv:quant-ph/0403042.Google Scholar
Alicki, R & Fannes, M (2004), ‘Continuity of quantum conditional information’, Journal of Physics A: Mathematical and General 37(5), L55–L57. arXiv:quantph/ 0312081.Google Scholar
Araki, H & Lieb, E. H (1970), ‘Entropy inequalities’, Communications in Mathematical Physics 18(2), 160–170.Google Scholar
Aspect, A., Grangier, P & Roger, G (1981), ‘Experimental tests of realistic local theories via Bell's theorem’, Physical Review Letters 47(7), 460–463.Google Scholar
Aubrun, G., Szarek, S & Werner, E (2011), ‘Hastings’ additivity counterexample via Dvoretzky's theorem', Communications in Mathematical Physics 305(1), 85–97. arXiv:1003.4925.Google Scholar
Audenaert, K., De Moor, B, Vollbrecht, K. G. H. & Werner, R. F (2002), ‘Asymptotic relative entropy of entanglement for orthogonally invariant states’, Physical ReviewA 66(3), 032310. arXiv:quant-ph/0204143.Google Scholar
Audenaert, K.M. R. (2007), ‘A sharp continuity estimate for the von Neumann entropy’, Journal of Physics A: Mathematical and Theoretical 40(28), 8127. arXiv:quant-ph/0610146.Google Scholar
Bardhan, B.R., Garcia-Patron, R, Wilde, M. M & Winter, A (2015), ‘Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels’, IEEETransactions on Information Theory 61(4), 1842–1850. arXiv:1401.4161.Google Scholar
Barnum, H., Caves, C. M, Fuchs, C. A, Jozsa, R & Schumacher, B (2001), ‘On quantum coding for ensembles of mixed states’, Journal of Physics A: Mathematical and General 34(35), 6767. arXiv:quant-ph/0008024.Google Scholar
Barnum, H., Hayden, P, Jozsa, R & Winter, A (2001), ‘On the reversible extraction of classical information from a quantum source’, Proceedings of the Royal Society A 457(2012), 2019–2039. arXiv:quant-ph/0011072.Google Scholar
Barnum, H & Knill, E (2002), ‘Reversing quantum dynamics with near-optimal quantum and classical fidelity’, Journal of Mathematical Physics 43(5), 2097–2106. arXiv:quant-ph/0004088.Google Scholar
Barnum, H., Knill, E & Nielsen, M. A (2000), ‘On quantum fidelities and channel capacities’, IEEE Transactions on Information Theory 46(4), 1317–1329. arXiv:quant-ph/9809010.Google Scholar
Barnum, H., Nielsen, M. A & Schumacher, B (1998), ‘Information transmission through a noisy quantum channel’, Physical Review A 57(6), 4153–4175.Google Scholar
Beigi, S., Datta, N & Leditzky, F (2015), ‘Decoding quantum information via the Petz recovery map’. arXiv:1504.04449.
Bell, J.S. (1964), ‘On the Einstein–Podolsky–Rosen paradox’, Physics 1, 195–200.Google Scholar
Bennett, C.H. (1992), ‘Quantum cryptography using any two nonorthogonal states’, Physical Review Letters 68(21), 3121–3124.Google Scholar
Bennett, C.H. (1995), ‘Quantum information and computation’, Physics Today 48(10), 24–30.Google Scholar
Bennett, C.H. (2004), ‘A resource-based view of quantum information’, Quantum Information and Computation 4, 460–466.Google Scholar
Bennett, C.H., Bernstein, H. J, Popescu, S & Schumacher, B (1996), ‘Concentrating partial entanglement by local operations’, Physical Review A 53(4), 2046–2052. arXiv:quant-ph/9511030.Google Scholar
Bennett, C.H. & Brassard, G (1984), ‘Quantum cryptography: Public key distribution and coin tossing’, in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179.
Bennett, C.H., Brassard, G, Crépeau, C, Jozsa, R, Peres, A & Wootters, W. K (1993), ‘Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels’, Physical Review Letters 70(13), 1895–1899.CrossRefGoogle Scholar
Bennett, C.H., Brassard, G & Ekert, A. K (1992), ‘Quantum cryptography’, Scientific American, 50–57.Google Scholar
Bennett, C.H., Brassard, G & Mermin, N. D (1992), ‘Quantum cryptography without Bell's theorem’, Physical Review Letters 68(5), 557–559.Google Scholar
Bennett, C.H., Brassard, G, Popescu, S, Schumacher, B, Smolin, J. A & Wootters, W. K (1996), ‘Purification of noisy entanglement and faithful teleportation via noisy channels’, Physical Review Letters 76(5), 722–725. arXiv:quant-ph/9511027.Google Scholar
Bennett, C.H., Devetak, I, Harrow, A. W, Shor, P. W & Winter, A (2014), ‘The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels’, IEEE Transactions on Information Theory 60(5), 2926–2959. arXiv:0912.5537.Google Scholar
Bennett, C.H., DiVincenzo, D. P., Shor, P.W., Smolin, J. A,Terhal, B. M & Wootters, W. K (2001), ‘Remote state preparation’, Physical Review Letters 87(7), 077902.Google Scholar
Bennett, C.H., DiVincenzo, D. P & Smolin, J. A (1997), ‘Capacities of quantum erasure channels’, Physical Review Letters 78(16), 3217–3220. arXiv:quant-ph/9701015.Google Scholar
Bennett, C.H., DiVincenzo, D. P, Smolin, J. A & Wootters, W. K. (1996), ‘Mixed-state entanglement and quantum error correction’, Physical Review A 54(5), 3824–3851. arXiv:quant-ph/9604024.Google Scholar
Bennett, C.H., Harrow, A. W & Lloyd, S (2006), ‘Universal quantum data compression via nondestructive tomography’, Physical Review A 73(3), 032336. arXiv:quant-ph/0403078.Google Scholar
Bennett, C.H., Hayden, P, Leung, D. W, Shor, P. W & Winter, A (2005), ‘Remote preparation of quantum states’, IEEE Transactions on Information Theory 51(1), 56–74. arXiv:quant-ph/0307100.Google Scholar
Bennett, C.H., Shor, P. W, Smolin, J. A & Thapliyal, A. V (1999), ‘Entanglementassisted classical capacity of noisy quantum channels’, Physical Review Letters 83(15), 3081–3084. arXiv:quant-ph/9904023.Google Scholar
Bennett, C.H., Shor, P. W, Smolin, J. A & Thapliyal, A. V (2002), ‘Entanglementassisted capacity of a quantum channel and the reverse Shannon theorem’, IEEETransactions on Information Theory 48(10), 2637–2655. arXiv:quant-ph/0106052.Google Scholar
Bennett, C.H. & Wiesner, S. J (1992), ‘Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states’, Physical Review Letters 69(20), 2881–2884.Google Scholar
Berger, T (1971), Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall, Englewood Cliffs, NJ.
Berger, T (1977), ‘Multiterminal source coding’, The Information Theory Approach to Communications, Springer-Verlag, New York, NY.
Bergh, J & Lofstrom, J. (1976), Interpolation Spaces, Springer-Verlag, Heidelberg.
Berta, M., Brandao, F.G. S. L., Christandl, M. & Wehner, S (2013), ‘Entanglement cost of quantum channels’, IEEE Transactions on Information Theory 59(10), 6779–6795. arXiv:1108.5357.Google Scholar
Berta, M., Christandl, M, Colbeck, R, Renes, J. M & Renner, R (2010), ‘The uncertainty principle in the presence of quantum memory’, Nature Physics 6, 659–662. arXiv:0909.0950.Google Scholar
Berta, M., Christandl, M & Renner, R (2011), ‘The quantum reverse Shannon theorem based on one-shot information theory’, Communications in Mathematical Physics 306(3), 579–615. arXiv:0912.3805.Google Scholar
Berta, M., Lemm, M & Wilde, M. M (2015), ‘Monotonicity of quantum relative entropy and recoverability’, Quantum Information and Computation 15(15&16), 1333–1354. arXiv:1412.4067.Google Scholar
Berta, M., Renes, J. M & Wilde, M. M (2014), ‘Identifying the information gain of a quantum measurement’, IEEE Transactions on Information Theory 60(12), 7987–8006. arXiv:1301.1594.Google Scholar
Berta, M., Seshadreesan, K & Wilde, M. M (2015), ‘Rényi generalizations of the conditional quantum mutual information’, Journal of Mathematical Physics 56(2), 022205. arXiv:1403.6102.Google Scholar
Berta, M & Tomamichel, M (2016), ‘The fidelity of recovery is multiplicative’, IEEETransactions on Information Theory 62(4), 1758–1763. arXiv:1502.07973.Google Scholar
Bhatia, R (1997), Matrix Analysis, Springer-Verlag, Heidelberg.
Blume-Kohout, R., Croke, S & Gottesman, D (2014), ‘Streaming universal distortionfree entanglement concentration’, IEEE Transactions on Information Theory 60(1), 334–350. arXiv:0910.5952.Google Scholar
Boche, H & Notzel, J (2014), ‘The classical–quantum multiple access channel with conferencing encoders and with common messages’, Quantum Information Processing 13(12), 2595–2617. arXiv:1310.1970.Google Scholar
Bohm, D (1989), Quantum Theory, Courier Dover Publications.
Bowen, G (2004), ‘Quantum feedback channels’, IEEE Transactions on Information Theory 50(10), 2429–2434. arXiv:quant-ph/0209076.Google Scholar
Bowen, G & Nagarajan, R (2005), ‘On feedback and the classical capacity of a noisy quantum channel’, IEEE Transactions on Information Theory 51(1), 320–324. arXiv:quant-ph/0305176.Google Scholar
Boyd, S & Vandenberghe, L (2004), Convex Optimization, Cambridge University Press, Cambridge, UK.
Brádler, K., Hayden, P, Touchette, D & Wilde, M. M (2010), ‘Trade-off capacities of the quantum Hadamard channels’, Physical Review A 81(6), 062312. arXiv:1001.1732.Google Scholar
Brandao, F.G.S. L., Christandl, M & Yard, J (2011), ‘Faithful squashed entanglement’, Communications in Mathematical Physics 306(3), 805–830. arXiv:1010.1750.Google Scholar
Brandao, F.G.S. L., Harrow, A. W, Oppenheim, J & Strelchuk, S (2014), ‘Quantum conditional mutual information, reconstructed states, and state redistribution’, Physical Review Letters 115(5), 050501. arXiv:1411.4921.Google Scholar
Brandao, F.G.S. L. & Horodecki, M (2010), ‘On Hastings’ counterexamples to the minimum output entropy additivity conjecture', Open Systems & Information Dynamics 17(1), 31–52. arXiv:0907.3210.Google Scholar
Braunstein, S.L., Fuchs, C. A, Gottesman, D & Lo, H.-K. (2000), ‘A quantum analog of Huffman coding’, IEEE Transactions on Information Theory 46(4), 1644–1649. arXiv:quant-ph/9805080.Google Scholar
Brun, T.A. (n.d.), ‘Quantum information processing course lecture slides’, http://almaak.usc.edu/∼tbrun/Course/.
Burnashev, M.V. & Holevo, A. S (1998), ‘On reliability function of quantum communication channel’, Probl. Peredachi Inform. 34(2), 1–13. arXiv:quant-ph/9703013.Google Scholar
Buscemi, F & Datta, N (2010), ‘The quantum capacity of channels with arbitrarily correlated noise’, IEEE Transactions on Information Theory 56(3), 1447–1460. arXiv:0902.0158.Google Scholar
Cai, N., Winter, A & Yeung, R. W (2004), ‘Quantum privacy and quantum wiretap channels’, Problems of Information Transmission 40(4), 318–336.CrossRefGoogle Scholar
Calderbank, A.R., Rains, E. M, Shor, P. W & Sloane, N.J.A. (1997), ‘Quantum error correction and orthogonal geometry’, Physical Review Letters 78(3), 405–408. arXiv:quant-ph/9605005.Google Scholar
Calderbank, A.R., Rains, E. M, Shor, P. W & Sloane, N.J.A. (1998), ‘Quantum error correction via codes over GF(4)’, IEEE Transactions on Information Theory 44(4), 1369–1387. arXiv:quant-ph/9608006.Google Scholar
Calderbank, A.R. & Shor, P. W (1996), ‘Good quantum error-correcting codes exist’, Physical Review A 54(2), 1098–1105. arXiv:quant-ph/9512032.Google Scholar
Carlen, E.A. & Lieb, E. H (2014), ‘Remainder terms for some quantum entropy inequalities’, Journal of Mathematical Physics 55(4), 042201. arXiv:1402.3840.Google Scholar
Cerf, N.J. & Adami, C (1997), ‘Negative entropy and information in quantum mechanics’, Physical Review Letters 79(26), 5194–5197. arXiv:quant-ph/9512022.Google Scholar
Coles, P., Berta, M, Tomamichel, M & Wehner, S (2015), ‘Entropic uncertainty relations and their applications’. arXiv:1511.04857.
Coles, P.J., Colbeck, R, Yu, L & Zwolak, M (2012), ‘Uncertainty relations from simple entropic properties’, Physical Review Letters 108(21), 210405. arXiv:1112.0543.Google Scholar
Cooney, T., Mosonyi, M & Wilde, M. M (2014), ‘Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication’, Communications in Mathematical Physics 344(3), June 2016, 797–829. arXiv:1408.Google Scholar
Cover, T.M. & Thomas, J. A (2006), Elements of Information Theory, 2nd edn, Wiley-Interscience, New York, NY.
Csiszar, I (1967), ‘Information-type measures of difference of probability distributions and indirect observations’, Studia Sci. Math. Hungar. 2, 299–318.Google Scholar
Csiszár, I & Körner, J (1978), ‘Broadcast channels with confidential messages’, IEEETransactions on Information Theory 24(3), 339–348.CrossRefGoogle Scholar
Csiszár, I. & Körner, J. (2011), Information Theory: Coding Theorems for Discrete Memoryless Systems, Probability and Mathematical Statistics, 2nd edn, Cambridge University Press.
Cubitt, T., Elkouss, D, Matthews, W, Ozols, M, Perez-Garcia, D. & Strelchuk, S (2015), ‘Unbounded number of channel uses may be required to detect quantum capacity’, Nature Communications 6, 6739. arXiv:1408.5115.Google Scholar
Czekaj, L & Horodecki, P (2009), ‘Purely quantum superadditivity of classical capacities of quantum multiple access channels’, Physical Review Letters 102(11), 110505. arXiv:0807.3977.Google Scholar
Dalai, M (2013), ‘Lower bounds on the probability of error for classical and classical– quantum channels’, IEEE Transactions on Information Theory 59(12), 8027–8056. arXiv:1201.5411.Google Scholar
Datta, N (2009), ‘Min- and max-relative entropies and a new entanglement monotone’, IEEE Transactions on Information Theory 55(6), 2816–2826. arXiv:0803.2770.Google Scholar
Datta, N & Hsieh, M.-H. (2010), ‘Universal coding for transmission of private information’, Journal of Mathematical Physics 51(12), 122202. arXiv:1007.2629.Google Scholar
Datta, N & Hsieh, M.-H. (2011), ‘The apex of the family tree of protocols: Optimal rates and resource inequalities’, New Journal of Physics 13, 093042. arXiv:1103. 1135.Google Scholar
Datta, N & Hsieh, M.-H. (2013), ‘One-shot entanglement-assisted quantum and classical communication’, IEEE Transactions on Information Theory 59(3), 1929–1939. arXiv:1105.3321.Google Scholar
Datta, N & Leditzky, F (2015), ‘Second-order asymptotics for source coding, dense coding, and pure-state entanglement conversions’, IEEE Transactions on Information Theory 61(1), 582–608. arXiv:1403.2543.Google Scholar
Datta, N & Renner, R (2009), ‘Smooth entropies and the quantum information spectrum’, IEEE Transactions on Information Theory 55(6), 2807–2815. arXiv:0801.0282.Google Scholar
Datta, N., Tomamichel, M & Wilde, M. M (2014), ‘On the Second-Order Asymptotics for Entanglement-Assisted Communication’, Quantum Information Processing (15) 6, June 2016, 2569–2591. arXiv:1405.1797.Google Scholar
Datta, N & Wilde, M. M (2015), ‘Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures’, Journal of Physics A 48(50), 505301. arXiv:1501.05636.Google Scholar
Davies, E.B. & Lewis, J. T (1970), ‘An operational approach to quantum probability’, Communications in Mathematical Physics 17(3), 239–260.CrossRefGoogle Scholar
de Broglie, L (1924), ‘Recherches sur la théorie des quanta’, PhD thesis, Paris.
Deutsch, D (1985), ‘Quantum theory, the Church–Turing principle and the universal quantum computer’, Proceedings of the Royal Society of London A 400(1818), 97–117.Google Scholar
Devetak, I (2005), ‘The private classical capacity and quantum capacity of a quantum channel’, IEEE Transactions on Information Theory 51(1), 44–55. arXiv:quantph/0304127.Google Scholar
Devetak, I (2006), ‘Triangle of dualities between quantum communication protocols’, Physical Review Letters 97(14), 140503.Google Scholar
Devetak, I., Harrow, A. W & Winter, A (2004), ‘A family of quantum protocols’, Physical Review Letters 93(23), 239503. arXiv:quant-ph/0308044.Google Scholar
Devetak, I., Harrow, A. W & Winter, A (2008), ‘A resource framework for quantum Shannon theory’, IEEE Transactions on Information Theory 54(10), 4587–4618. arXiv:quant-ph/0512015.Google Scholar
Devetak, I., Junge, M, King, C & Ruskai, M. B (2006), ‘Multiplicativity of completely bounded p-norms implies a new additivity result’, Communications in Mathematical Physics 266(1), 37–63. arXiv:quant-ph/0506196.Google Scholar
Devetak, I & Shor, P. W (2005), ‘The capacity of a quantum channel for simultaneous transmission of classical and quantum information’, Communications in Mathematical Physics 256(2), 287–303. arXiv:quant-ph/0311131.Google Scholar
Devetak, I & Winter, A (2003), ‘Classical data compression with quantum side information’, Physical Review A 68(4), 042301. arXiv:quant-ph/0209029.Google Scholar
Devetak, I & Winter, A (2004), ‘Relating quantum privacy and quantum coherence: An operational approach’, Physical Review Letters 93(8), 080501. arXiv:quantph/ 0307053.Google Scholar
Devetak, I & Winter, A (2005), ‘Distillation of secret key and entanglement from quantum states’, Proceedings of the Royal Society A 461(2053), 207–235. arXiv:quant-ph/0306078.Google Scholar
Devetak, I & Yard, J (2008), ‘Exact cost of redistributing multipartite quantum states’, Physical Review Letters 100(23), 230501.Google Scholar
Dieks, D (1982), ‘Communication by EPR devices’, Physics Letters A 92, 271.Google Scholar
Ding, D & Wilde, M. M (2015), ‘Strong converse exponents for the feedback-assisted classical capacity of entanglement-breaking channels’. arXiv:1506.02228.
Dirac, P.A.M. (1982), The Principles of Quantum Mechanics (International Series of Monographs on Physics), Oxford University Press, USA.
DiVincenzo, D.P., Horodecki, M, Leung, D. W, Smolin, J. A & Terhal, B. M (2004), ‘Locking classical correlations in quantum states’, Physical Review Letters 92(6), 067902. arXiv:quant-ph/0303088.Google Scholar
DiVincenzo, D.P., Shor, P. W & Smolin, J. A (1998), ‘Quantum-channel capacity of very noisy channels’, Physical Review A 57(2), 830–839. arXiv:quant-ph/9706061.Google Scholar
Dowling, J.P. & Milburn, G. J (2003), ‘Quantum technology: The second quantum revolution’, Philosophical Transactions of The Royal Society of London Series A 361(1809), 1655–1674. arXiv:quant-ph/0206091.Google Scholar
Dupuis, F (2010), ‘The decoupling approach to quantum information theory’, PhD thesis, University of Montreal. arXiv:1004.1641.
Dupuis, F., Berta, M, Wullschleger, J & Renner, R (2014), ‘One-shot decoupling’, Communications in Mathematical Physics 328(1), 251–284. arXiv:1012.6044.Google Scholar
Dupuis, F., Florjanczyk, J, Hayden, P & Leung, D (2013), ‘The locking-decoding frontier for generic dynamics’, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 469(2159). arXiv:1011.1612.Google Scholar
Dupuis, F., Hayden, P & Li, K (2010), ‘A father protocol for quantum broadcast channels’, IEEE Transactions on Information Theory 56(6), 2946–2956. arXiv:quantph/ 0612155.Google Scholar
Dupuis, F & Wilde, M. M (2016), ‘Swiveled Rényi entropies’, Quantum Information Processing 15(3), 1309–1345. arXiv:1506.00981.Google Scholar
Dutil, N (2011), ‘Multiparty quantum protocols for assisted entanglement distillation’, PhD thesis, McGill University. arXiv:1105.4657.
Einstein, A (1905), ‘Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt’, Annalen der Physik 17, 132–148.CrossRefGoogle Scholar
Einstein, A., Podolsky, B & Rosen, N (1935), ‘Can quantum-mechanical description of physical reality be considered complete?’, Physical Review 47, 777–780.Google Scholar
Ekert, A.K. (1991), ‘Quantum cryptography based on Bell's theorem’, Physical Review Letters 67(6), 661–663.CrossRefGoogle Scholar
Elias, P (1972), ‘The efficient construction of an unbiased random sequence’, Annals of Mathematical Statistics 43(3), 865–870.CrossRefGoogle Scholar
Elkouss, D & Strelchuk, S (2015), ‘Superadditivity of private information for any number of uses of the channel’, Physical Review Letters 115(4), 040501. arXiv:1502.05326.Google Scholar
Fannes, M (1973), ‘A continuity property of the entropy density for spin lattices’, Communications in Mathematical Physics 31, 291.Google Scholar
Fano, R.M. (2008), ‘Fano inequality’, Scholarpedia 3(10), 6648.Google Scholar
Fawzi, O., Hayden, P, Savov, I, Sen, P & Wilde, M. M (2012), ‘Classical communication over a quantum interference channel’, IEEE Transactions on Information Theory 58(6), 3670–3691. arXiv:1102.2624.Google Scholar
Fawzi, O., Hayden, P & Sen, P (2013), ‘From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking’, Journal of the ACM 60(6), 44:1–44:61. arXiv:1010.3007.Google Scholar
Fawzi, O & Renner, R (2015), ‘Quantum conditional mutual information and approximate Markov chains’, Communications in Mathematical Physics 340(2), 575–611. arXiv:1410.0664.Google Scholar
Feller, W (1971), An Introduction to Probability Theory and Its Applications, 2nd edn, John Wiley and Sons.
Feynman, R.P. (1982), ‘Simulating physics with computers’, International Journal of Theoretical Physics 21, 467–488.CrossRefGoogle Scholar
Feynman, R.P. (1998), Feynman Lectures On Physics (3 Volume Set), Addison Wesley Longman.
Fuchs, C (1996), ‘Distinguishability and Accessible Information in Quantum Theory’, PhD thesis, University of New Mexico. arXiv:quant-ph/9601020.
Fuchs, C.A. & Caves, C. M (1995), ‘Mathematical techniques for quantum communication theory’, Open Systems & Information Dynamics 3(3), 345–356. arXiv:quantph/ 9604001.Google Scholar
Fuchs, C.A. & van de Graaf, J. (1998), ‘Cryptographic distinguishability measures for quantum mechanical states’, IEEE Transactions on Information Theory 45(4), 1216–1227. arXiv:quant-ph/9712042.Google Scholar
Fukuda, M & King, C (2010), ‘Entanglement of random subspaces via the Hastings bound’, Journal of Mathematical Physics 51(4), 042201. arXiv:0907.5446.Google Scholar
Fukuda, M., King, C & Moser, D. K (2010), ‘Comments on Hastings’ additivity counterexamples', Communications in Mathematical Physics 296(1), 111–143. arXiv:0905.3697.Google Scholar
Gamal, A.E. & Kim, Y.-H. (2012), Network Information Theory, Cambridge University Press. arXiv:1001.3404.
García-Patrón, R., Pirandola, S, Lloyd, S & Shapiro, J. H (2009), ‘Reverse coherent information’, Physical Review Letters 102(21), 210501. arXiv:0808.0210.Google Scholar
Gerlach, W & Stern, O (1922), ‘Das magnetische moment des silberatoms’, Zeitschrift für Physik 9, 353–355.CrossRefGoogle Scholar
Giovannetti, V & Fazio, R (2005), ‘Information-capacity description of spin-chain correlations’, Physical Review A 71(3), 032314. arXiv:quant-ph/0405110.Google Scholar
Giovannetti, V., Guha, S, Lloyd, S, Maccone, L & Shapiro, J. H (2004), ‘Minimum output entropy of bosonic channels: A conjecture’, Physical Review A 70(3), 032315. arXiv:quant-ph/0404005.Google Scholar
Giovannetti, V., Guha, S, Lloyd, S, Maccone, L, Shapiro, J. H & Yuen, H. P (2004), ‘Classical capacity of the lossy bosonic channel: The exact solution’, Physical Review Letters 92(2), 027902. arXiv:quant-ph/0308012.Google Scholar
Giovannetti, V., Holevo, A. S & García-Patrón, R (2015), ‘A solution of Gaussian optimizer conjecture for quantum channels’, Communications in Mathematical Physics 334(3), 1553–1571.CrossRefGoogle Scholar
Giovannetti, V., Holevo, A. S, Lloyd, S & Maccone, L (2010), ‘Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results’, Journal of Physics A: Mathematical and Theoretical 43(41), 415305. arXiv:1004.4787.Google Scholar
Giovannetti, V., Lloyd, S & Maccone, L (2012), ‘Achieving the Holevo bound via sequential measurements’, Physical Review A 85, 012302. arXiv:1012.0386.Google Scholar
Giovannetti, V., Lloyd, S, Maccone, L & Shor, P. W (2003a), ‘Broadband channel capacities’, Physical Review A 68(6), 062323. arXiv:quant-ph/0307098.Google Scholar
Giovannetti, V., Lloyd, S, Maccone, L & Shor, P. W (2003b), ‘Entanglement assisted capacity of the broadband lossy channel’, Physical Review Letters 91(4), 047901. arXiv:quant-ph/0304020.Google Scholar
Glauber, R.J. (1963a), ‘Coherent and incoherent states of the radiation field’, Physical Review 131(6), 2766–2788.Google Scholar
Glauber, R.J. (1963b), ‘The quantum theory of optical coherence’, Physical Review 130(6), 2529–2539.Google Scholar
Glauber, R.J. (2005), ‘One hundred years of light quanta’, in K, Grandin, ed., Les Prix Nobel. The Nobel Prizes 2005, Nobel Foundation, pp. 90–91.
Gordon, J.P. (1964), ‘Noise at optical frequencies; information theory’, in P.A, Miles, ed., Quantum Electronics and Coherent Light; Proceedings of the International School of Physics Enrico Fermi, Course XXXI, Academic Press New York, pp. 156–181.
Gottesman, D (1996), ‘Class of quantum error-correcting codes saturating the quantum Hamming bound’, Physical Review A 54(3), 1862–1868. arXiv:quant-ph/9604038.Google Scholar
Gottesman, D (1997), ‘Stabilizer Codes and Quantum Error Correction’, PhD thesis, California Institute of Technology. arXiv:quant-ph/9705052.
Grafakos, L (2008), Classical Fourier Analysis, 2nd edn, Springer.
Grassl, M., Beth, T & Pellizzari, T (1997), ‘Codes for the quantum erasure channel’, Physical Review A 56(1), 33–38. arXiv:quant-ph/9610042.Google Scholar
Greene, B (1999), The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, W. W. Norton & Company.
Griffiths, D.J. (1995), Introduction to Quantum Mechanics, Prentice-Hall, Inc.
Groisman, B., Popescu, S & Winter, A (2005), ‘Quantum, classical, and total amount of correlations in a quantum state’, Physical Review A 72(3), 032317. arXiv:quantph/ 0410091.Google Scholar
Grudka, A & Horodecki, P (2010), ‘Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network’, Physical Review A 81(6), 060305. arXiv:0906.1305.Google Scholar
Guha, S (2008), ‘Multiple-User Quantum Information Theory for Optical Communication Channels’, PhD thesis, Massachusetts Institute of Technology.
Guha, S., Hayden, P, Krovi, H, Lloyd, S, Lupo, C, Shapiro, J. H, Takeoka, M & Wilde, M. M (2014), ‘Quantum enigma machines and the locking capacity of a quantum channel’, Physical Review X 4(1), 011016. arXiv:1307.5368.Google Scholar
Guha, S & Shapiro, J. H (2007), ‘Classical information capacity of the bosonic broadcast channel’, in Proceedings of the IEEE International Symposium on Information Theory, Nice, France, pp. 1896–1900. arXiv:0704.1901.
Guha, S., Shapiro, J. H & Erkmen, B. I (2007), ‘Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture’, Physical Review A 76(3), 032303. arXiv:0706.3416.Google Scholar
Guha, S., Shapiro, J. H & Erkmen, B. I (2008), ‘Capacity of the bosonic wiretap channel and the entropy photon-number inequality’, in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ontario, Canada, pp. 91–95. arXiv:0801.0841.
Gupta, M & Wilde, M. M (2015), ‘Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity’, Communications in Mathematical Physics 334(2), 867–887. arXiv:1310.7028.Google Scholar
Hamada, M (2005), ‘Information rates achievable with algebraic codes on quantum discrete memoryless channels’, IEEE Transactions on Information Theory 51(12), 4263–4277. arXiv:quant-ph/0207113.Google Scholar
Harrington, J & Preskill, J (2001), ‘Achievable rates for the Gaussian quantum channel’, Physical Review A 64(6), 062301. arXiv:quant-ph/0105058.Google Scholar
Harrow, A (2004), ‘Coherent communication of classical messages’, Physical Review Letters 92(9), 097902. arXiv:quant-ph/0307091.Google Scholar
Harrow, A.W. & Lo, H-K. (2004), ‘A tight lower bound on the classical communication cost of entanglement dilution’, IEEE Transactions on Information Theory 50(2), 319–327. arXiv:quant-ph/0204096.Google Scholar
Hastings, M.B. (2009), ‘Superadditivity of communication capacity using entangled inputs’, Nature Physics 5, 255–257. arXiv:0809.3972.Google Scholar
Hausladen, P., Jozsa, R, Schumacher, B, Westmoreland, M & Wootters, W. K (1996), ‘Classical information capacity of a quantum channel’, Physical Review A 54(3), 1869–1876.CrossRefGoogle Scholar
Hausladen, P., Schumacher, B, Westmoreland, M & Wootters, W. K (1995), ‘Sending classical bits via quantum its’, Annals of the New York Academy of Sciences 755, 698–705.Google Scholar
Hayashi, M (2002), ‘Exponents of quantum fixed-length pure-state source coding’, Physical Review A 66(3), 032321. arXiv:quant-ph/0202002.Google Scholar
Hayashi, M (2006), Quantum Information: An Introduction, Springer.
Hayashi, M (2007), ‘Error exponent in asymmetric quantum hypothesis testing and its application to classical–quantum channel coding’, Physical Review A 76(6), 062301. arXiv:quant-ph/0611013.Google Scholar
Hayashi, M., Koashi, M, Matsumoto, K, Morikoshi, F & Winter, A (2003), ‘Error exponents for entanglement concentration’, Journal of Physics A: Mathematical and General 36(2), 527. arXiv:quant-ph/0206097.Google Scholar
Hayashi, M & Matsumoto, K (2001), ‘Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding’. arXiv:quant-ph/0109028.
Hayashi, M & Nagaoka, H (2003), ‘General formulas for capacity of classical–quantum channels’, IEEE Transactions on Information Theory 49(7), 1753–1768. arXiv:quantph/ 0206186.Google Scholar
Hayden, P (2007), ‘The maximal p-norm multiplicativity conjecture is false’. arXiv:0707.3291.
Hayden, P., Horodecki, M, Winter, A & Yard, J (2008), ‘A decoupling approach to the quantum capacity’, Open Systems & Information Dynamics 15(1), 7–19. arXiv:quant-ph/0702005.Google Scholar
Hayden, P., Jozsa, R, Petz, D & Winter, A (2004), ‘Structure of states which satisfy strong subadditivity of quantum entropy with equality’, Communications in Mathematical Physics 246(2), 359–374. arXiv:quant-ph/0304007.Google Scholar
Hayden, P., Jozsa, R & Winter, A (2002), ‘Trading quantum for classical resources in quantum data compression’, Journal of Mathematical Physics 43(9), 4404–4444. arXiv:quant-ph/0204038.Google Scholar
Hayden, P., Leung, D, Shor, P. W & Winter, A (2004), ‘Randomizing quantum states: Constructions and applications’, Communications in Mathematical Physics 250(2), 371–391. arXiv:quant-ph/0307104.Google Scholar
Hayden, P., Shor, P. W & Winter, A (2008), ‘Random quantum codes from Gaussian ensembles and an uncertainty relation’, Open Systems & Information Dynamics 15(1), 71–89. arXiv:0712.0975.Google Scholar
Hayden, P & Winter, A (2003), ‘Communication cost of entanglement transformations’, Physical Review A 67(1), 012326. arXiv:quant-ph/0204092.Google Scholar
Hayden, P & Winter, A (2008), ‘Counterexamples to the maximal p-norm multiplicativity conjecture for all’, Communications in Mathematical Physics 284(1), 263–280. arXiv:0807.4753.Google Scholar
Heinosaari, T & Ziman, M (2012), The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press.
Heisenberg, W (1925), ‘ Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen’, Zeitschrift für Physik 33, 879–893.CrossRefGoogle Scholar
Helstrom, C.W. (1969), ‘Quantum detection and estimation theory’, Journal of Statistical Physics 1, 231–252.CrossRefGoogle Scholar
Helstrom, C.W. (1976), Quantum Detection and Estimation Theory, Academic, New York, NY.
Herbert, N (1982), ‘Flash—a superluminal communicator based upon a new kind of quantum measurement’, Foundations of Physics 12(12), 1171–1179.CrossRefGoogle Scholar
Hirche, C & Morgan, C (2015), ‘An improved rate region for the classical–quantum broadcast channel’, Proceedings of the 2015 IEEE International Symposium on Information Theory pp. 2782–2786. arXiv:1501.07417.Google Scholar
Hirche, C., Morgan, C & Wilde, M. M (2016), ‘Polar codes in network quantum information theory’, IEEE Transactions on Information Theory 62(2), 915–924. arXiv:1409.7246.Google Scholar
Hirschman, I.I. (1952), ‘A convexity theorem for certain groups of transformations’, Journal d'Analyse Mathématique 2(2), 209–218.CrossRefGoogle Scholar
Holevo, A.S. (1973a), ‘Bounds for the quantity of information transmitted by a quantum communication channel’, Problems of Information Transmission 9, 177–183.Google Scholar
Holevo, A.S. (1973b), ‘Statistical problems in quantum physics’, in Second Japan- USSR Symposium on Probability Theory, Vol. 330 of Lecture Notes in Mathematics, Springer Berlin/Heidelberg, pp. 104–119.
Holevo, A.S. (1998), ‘The capacity of the quantum channel with general signal states’, IEEE Transactions on Information Theory 44(1), 269–273. arXiv:quant-ph/9611023.Google Scholar
Holevo, A.S. (2000), ‘Reliability function of general classical–quantum channel’, IEEETransactions on Information Theory 46(6), 2256–2261. arXiv:quant-ph/9907087.Google Scholar
Holevo, A.S. (2002a), An Introduction to Quantum Information Theory, Moscow Center of Continuous Mathematical Education, Moscow. In Russian.
Holevo, A.S. (2002b), ‘On entanglement assisted classical capacity’, Journal of Mathematical Physics 43(9), 4326–4333. arXiv:quant-ph/0106075.Google Scholar
Holevo, A.S. (2012), Quantum Systems, Channels, Information, de Gruyter Studies in Mathematical Physics (Book 16), de Gruyter.
Holevo, A.S. & Werner, R. F (2001), ‘Evaluating capacities of bosonic Gaussian channels’, Physical Review A 63(3), 032312. arXiv:quant-ph/9912067.Google Scholar
Horodecki, M (1998), ‘Limits for compression of quantum information carried by ensembles of mixed states’, Physical Review A 57(5), 3364–3369. arXiv:quantph/9712035.Google Scholar
Horodecki, M., Horodecki, P & Horodecki, R (1996), ‘Separability of mixed states: necessary and sufficient conditions’, Physics Letters A 223(1-2), 1–8. arXiv:quantph/ 9605038.Google Scholar
Horodecki, M., Horodecki, P, Horodecki, R, Leung, D & Terhal, B (2001), ‘Classical capacity of a noiseless quantum channel assisted by noisy entanglement’, Quantum Information and Computation 1(3), 70–78. arXiv:quant-ph/0106080.Google Scholar
Horodecki, M., Oppenheim, J & Winter, A (2005), ‘Partial quantum information’, Nature 436, 673–676.CrossRefGoogle Scholar
Horodecki, M., Oppenheim, J & Winter, A (2007), ‘Quantum state merging and negative information’, Communications in Mathematical Physics 269(1), 107–136. arXiv:quant-ph/0512247.Google Scholar
Horodecki, M., Shor, P. W & Ruskai, M. B (2003), ‘Entanglement breaking channels’, Reviews in Mathematical Physics 15(6), 629–641. arXiv:quant-ph/0302031.Google Scholar
Horodecki, P (1997), ‘Separability criterion and inseparable mixed states with positive partial transposition’, Physics Letters A 232(5), 333–339. arXiv:quant-ph/9703004.Google Scholar
Horodecki, R & Horodecki, P (1994), ‘Quantum redundancies and local realism’, Physics Letters A 194(3), 147–152.CrossRefGoogle Scholar
Horodecki, R., Horodecki, P, Horodecki, M & Horodecki, K (2009), ‘Quantum entanglement’, Reviews of Modern Physics 81(2), 865–942. arXiv:quant-ph/0702225.Google Scholar
Hsieh, M-H., Devetak, I & Winter, A (2008), ‘Entanglement-assisted capacity of quantum multiple-access channels’, IEEE Transactions on Information Theory 54(7), 3078–3090. arXiv:quant-ph/0511228.Google Scholar
Hsieh, M-H, Luo, Z & Brun, T (2008), ‘Secret-key-assisted private classical communication capacity over quantum channels’, Physical Review A 78(4), 042306. arXiv:0806.3525.Google Scholar
Hsieh, M-H & Wilde, M. M (2009), ‘Public and private communication with a quantum channel and a secret key’, Physical Review A 80(2), 022306. arXiv:0903. 3920.Google Scholar
Hsieh, M-H & Wilde, M. M (2010a), ‘Entanglement-assisted communication of classical and quantum information’, IEEE Transactions on Information Theory 56(9), 4682–4704. arXiv:0811.4227.Google Scholar
Hsieh, M-H & Wilde, M. M (2010b), ‘Trading classical communication, quantum communication, and entanglement in quantum Shannon theory’, IEEE Transactions on Information Theory 56(9), 4705–4730. arXiv:0901.3038.Google Scholar
Jaynes, E.T. (1957a), ‘Information theory and statistical mechanics’, Physical Review 106, 620.Google Scholar
Jaynes, E.T. (1957b), ‘Information theory and statistical mechanics II’, Physical Review 108, 171.Google Scholar
Jaynes, E.T. (2003), Probability Theory: The Logic of Science, Cambridge University Press.
Jencova, A (2012), ‘Reversibility conditions for quantum operations’, Reviews in Mathematical Physics 24(7), 1250016. arXiv:1107.0453.Google Scholar
Jochym-O'Connor, T., Brádler, K. & Wilde, M. M (2011), ‘Trade-off coding for universal qudit cloners motivated by the Unruh effect’, Journal of Physics A: Mathematical and Theoretical 44(41), 415306. arXiv:1103.0286.Google Scholar
Jozsa, R (1994), ‘Fidelity for mixed quantum states’, Journal of Modern Optics 41(12), 2315–2323.CrossRefGoogle Scholar
Jozsa, R., Horodecki, M, Horodecki, P & Horodecki, R (1998), ‘Universal quantum information compression’, Physical Review Letters 81(8), 1714–1717. arXiv:quantph/ 9805017.Google Scholar
Jozsa, R & Presnell, S (2003), ‘Universal quantum information compression and degrees of prior knowledge’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 459(2040), 3061–3077. arXiv:quant-ph /0210196.Google Scholar
Jozsa, R & Schumacher, B (1994), ‘A new proof of the quantum noiseless coding theorem’, Journal of Modern Optics 41(12), 2343–2349.CrossRefGoogle Scholar
Junge, M., Renner, R, Sutter, D, Wilde, M. M & Winter, A (2015), ‘Universal recovery from a decrease of quantum relative entropy’. arXiv:1509.07127.
Kaye, P & Mosca, M (2001), ‘Quantum networks for concentrating entanglement’, Journal of Physics A: Mathematical and General 34(35), 6939. arXiv:quantph/ 0101009.Google Scholar
Kelvin, W.T. (1901), ‘Nineteenth-century clouds over the dynamical theory of heat and light’, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 2(6), 1.Google Scholar
Kemperman, J.H.B. (1969), ‘On the optimum rate of transmitting information’, Lecture Notes in Mathematics 89, 126–169. In Probability and Information Theory.Google Scholar
Kim, I.H. (2013), ‘Application of conditional independence to gapped quantum manybody systems’, www.physics.usyd.edu.au/quantum/Coogee2013. Slide 43.
King, C (2002), ‘Additivity for unital qubit channels’, Journal of Mathematical Physics 43(10), 4641–4653. arXiv:quant-ph/0103156.Google Scholar
King, C (2003), ‘The capacity of the quantum depolarizing channel’, IEEE Transactions on Information Theory 49(1), 221–229. arXiv:quant-ph/0204172.Google Scholar
King, C., Matsumoto, K, Nathanson, M & Ruskai, M. B (2007), ‘Properties of conjugate channels with applications to additivity and multiplicativity’, Markov Processes and Related Fields 13(2), 391–423. J.T Lewis memorial issue. arXiv:quantph/ 0509126.Google Scholar
Kitaev, A.Y. (1997), Uspekhi Mat. Nauk. 52(53).
Klesse, R (2008), ‘A random coding based proof for the quantum coding theorem’, Open Systems & Information Dynamics 15(1), 21–45. arXiv:0712.2558.Google Scholar
Knill, E.H., Laflamme, R & Zurek, W. H (1998), ‘Resilient quantum computation’, Science 279, 342–345. quant-ph/9610011.Google Scholar
Koashi, M & Imoto, N (2001), ‘Teleportation cost and hybrid compression of quantum signals’. arXiv:quant-ph/0104001.
Koenig, R., Renner, R & Schaffner, C (2009), ‘The operational meaning of minand max-entropy’, IEEE Transactions on Information Theory 55(9), 4337–4347. arXiv:0807.1338.Google Scholar
Koenig, R & Wehner, S (2009), ‘A strong converse for classical channel coding using entangled inputs’, Physical Review Letters 103(7), 070504. arXiv:0903.2838.Google Scholar
König, R., Renner, R, Bariska, A & Maurer, U (2007), ‘Small accessible quantum information does not imply security’, Physical Review Letters 98(14), 140502. arXiv:quant-ph/0512021.Google Scholar
Kremsky, I., Hsieh, M-H. & Brun, T. A (2008), ‘Classical enhancement of quantumerror- correcting codes’, Physical Review A 78(1), 012341. arXiv:0802.2414.Google Scholar
Kullback, S (1967), ‘A lower bound for discrimination in terms of variation’, IEEE-IT 13, 126–127.CrossRefGoogle Scholar
Kumagai, W & Hayashi, M (2013), ‘Entanglement concentration is irreversible’, Physical Review Letters 111(13), 130407. arXiv:1305.6250.Google Scholar
Kuperberg, G (2003), ‘The capacity of hybrid quantum memory’, IEEE Transactions on Information Theory 49(6), 1465–1473. arXiv:quant-ph/0203105.Google Scholar
Laflamme, R., Miquel, C, Paz, J. P & Zurek, W. H (1996), ‘Perfect quantum error correcting code’, Physical Review Letters 77(1), 198–201.CrossRefGoogle Scholar
Landauer, R (1995), ‘Is quantum mechanics useful?’, Philosophical Transactions of the Royal Society: Physical and Engineering Sciences 353(1703), 367–376.CrossRefGoogle Scholar
Lanford, O.E. & Robinson, D. W (1968), ‘Mean entropy of states in quantumstatistical mechanics’, Journal of Mathematical Physics 9(7), 1120–1125.CrossRefGoogle Scholar
Levitin, L.B. (1969), ‘On the quantum measure of information’, in Proceedings of the Fourth All-Union Conference on Information and Coding Theory, Sec. II, Tashkent.
Li, K & Winter, A (2014), ‘Squashed entanglement, k-extendibility, quantum Markov chains, and recovery maps’. arXiv:1410.4184.
Li, K., Winter, A, Zou, X & Guo, G-C. (2009), ‘Private capacity of quantum channels is not additive’, Physical Review Letters 103(12), 120501. arXiv:0903.4308.Google Scholar
Lieb, E.H. (1973), ‘Convex trace functions and the Wigner–Yanase–Dyson conjecture’, Advances in Mathematics 11, 267–288.Google Scholar
Lieb, E.H. & Ruskai, M. B (1973a), ‘A fundamental property of quantum-mechanical entropy’, Physical Review Letters 30(10), 434–436.Google Scholar
Lieb, E.H. & Ruskai, M. B (1973b), ‘Proof of the strong subadditivity of quantummechanical entropy’, Journal of Mathematical Physics 14, 1938–1941.Google Scholar
Lindblad, G (1975), ‘Completely positive maps and entropy inequalities’, Communications in Mathematical Physics 40(2), 147–151.CrossRefGoogle Scholar
Lloyd, S (1997), ‘Capacity of the noisy quantum channel’, Physical Review A 55(3), 1613–1622. arXiv:quant-ph/9604015.Google Scholar
Lloyd, S., Giovannetti, V & Maccone, L (2011), ‘Sequential projective measurements for channel decoding’, Physical Review Letters 106(25), 250501. arXiv:1012.0106.Google Scholar
Lo, H-K. (1995), ‘Quantum coding theorem for mixed states’, Optics Communications 119(5-6), 552–556. arXiv:quant-ph/9504004.Google Scholar
Lo, H-K. & Popescu, S (1999), ‘Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?’, Physical Review Letters 83(7), 1459–1462.CrossRefGoogle Scholar
Lo, H-K. & Popescu, S (2001), ‘Concentrating entanglement by local actions: Beyond mean values’, Physical Review A 63(2), 022301. arXiv:quant-ph/9707038.Google Scholar
Lupo, C & Lloyd, S (2014), ‘Quantum-locked key distribution at nearly the classical capacity rate’, Physical Review Letters 113(16), 160502. arXiv:1406.4418.Google Scholar
Lupo, C & Lloyd, S (2015), ‘Quantum data locking for high-rate private communication’, New Journal of Physics 17(3), 033022.Google Scholar
MacKay, D (2003), Information Theory, Inference, and Learning Algorithms, Cambridge University Press.
Matthews, W & Wehner, S (2014), ‘Finite blocklength converse bounds for quantum channels’, IEEE Transactions on Information Theory 60(11), 7317–7329. arXiv:1210.4722.Google Scholar
McEvoy, J.P. & Zarate, O (2004), Introducing Quantum Theory, 3rd edn, Totem Books.
Misner, C.W., Thorne, K. S & Zurek, W. H (2009), ‘John Wheeler, relativity, and quantum information’, Physics Today.
Morgan, C & Winter, A (2014), ‘“Pretty strong” converse for the quantum capacity of degradable channels’, IEEE Transactions on Information Theory 60(1), 317–333. arXiv:1301.4927.Google Scholar
Mosonyi, M (2005), ‘Entropy, Information and Structure of Composite Quantum States’, PhD thesis, Katholieke Universiteit Leuven. Available at https://lirias.kuleuven.be/bitstream/1979/41/2/thesisbook9.pdf.
Mosonyi, M & Datta, N (2009), ‘Generalized relative entropies and the capacity of classical–quantum channels’, Journal of Mathematical Physics 50(7), 072104. arXiv:0810.3478.Google Scholar
Mosonyi, M & Petz, D (2004), ‘Structure of sufficient quantum coarse-grainings’, Letters in Mathematical Physics 68(1), 19–30. arXiv:quant-ph/0312221.Google Scholar
Mullins, J (2001), ‘The topsy turvy world of quantum computing’, IEEE Spectrum 38(2), 42–49.CrossRefGoogle Scholar
Nielsen, M.A. (1998), ‘Quantum information theory’, PhD thesis, University of New Mexico. arXiv:quant-ph/0011036.
Nielsen, M.A. (1999), ‘Conditions for a class of entanglement transformations’, Physical Review Letters 83(2), 436–439. arXiv:quant-ph/9811053.Google Scholar
Nielsen, M.A. (2002), ‘A simple formula for the average gate fidelity of a quantum dynamical operation’, Physics Letters A 303(4), 249–252.CrossRefGoogle Scholar
Nielsen, M.A. & Chuang, I. L (2000), Quantum Computation and Quantum Information, Cambridge University Press.
Ogawa, T & Nagaoka, H (1999), ‘Strong converse to the quantum channel coding theorem’, IEEE Transactions on Information Theory 45(7), 2486–2489. arXiv:quantph/9808063.Google Scholar
Ogawa, T & Nagaoka, H (2007), ‘Making good codes for classical–quantum channel coding via quantum hypothesis testing’, IEEE Transactions on Information Theory 53(6), 2261–2266.CrossRefGoogle Scholar
Ohya, M & Petz, D (1993), Quantum Entropy and Its Use, Springer.
Ollivier, H & Zurek, W. H (2001), ‘Quantum discord: A measure of the quantumness of correlations’, Physical Review Letters 88(1), 017901. arXiv:quant-ph/0105072.Google Scholar
Ozawa, M (1984), ‘Quantum measuring processes of continuous observables’, Journal of Mathematical Physics 25(1), 79–87.CrossRefGoogle Scholar
Ozawa, M (2000), ‘Entanglement measures and the Hilbert–Schmidt distance’, Physics Letters A 268(3), 158–160. arXiv:quant-ph/0002036.Google Scholar
Pati, A.K. & Braunstein, S. L (2000), ‘Impossibility of deleting an unknown quantum state’, Nature 404, 164–165. arXiv:quant-ph/9911090.Google Scholar
Peres, A (2002), ‘How the no-cloning theorem got its name’. arXiv:quant-ph/0205076.
Petz, D (1986), ‘Sufficient subalgebras and the relative entropy of states of a von Neumann algebra’, Communications in Mathematical Physics 105(1), 123–131.CrossRefGoogle Scholar
Petz, D (1988), ‘Sufficiency of channels over von Neumann algebras’, Quarterly Journal of Mathematics 39(1), 97–108.CrossRefGoogle Scholar
Pierce, J.R. (1973), ‘The early days of information theory’, IEEE Transactions on Information Theory IT-19(1), 3–8.CrossRefGoogle Scholar
Pinsker, M.S. (1960), ‘Information and information stability of random variables and processes’, Problemy Peredaci Informacii 7. AN SSSR, Moscow. English translation: Holden-Day, San Francisco, CA, 1964.
Planck, M (1901), ‘Ueber das gesetz der energieverteilung im normalspectrum’, Annalen der Physik 4, 553–563.CrossRefGoogle Scholar
Plenio, M.B., Virmani, S & Papadopoulos, P (2000), ‘Operator monotones, the reduction criterion and the relative entropy’, Journal of Physics A: Mathematical and General 33(22), L193. arXiv:quant-ph/0002075.Google Scholar
Preskill, J (1998), ‘Reliable quantum computers’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1969), 385–410. arXiv:quantph/9705031.Google Scholar
Radhakrishnan, J., Sen, P & Warsi, N (2014), ‘One-shot Marton inner bound for classical–quantum broadcast channel’. arXiv:1410.3248.
Rains, E.M. (2001), ‘A semidefinite program for distillable entanglement’, IEEE Transactions on Information Theory 47(7), 2921–2933. arXiv:quant-ph/0008047.Google Scholar
Reed, M & Simon, B (1975), Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press.
Renner, R (2005), ‘Security of Quantum Key Distribution’, PhD thesis, ETH Zurich. arXiv:quant-ph/0512258.
Rivest, R., Shamir, A & Adleman, L (1978), ‘A method for obtaining digital signatures and public-key cryptosystems’, Communications of the ACM 21(2), 120–126.CrossRefGoogle Scholar
Sakurai, J.J. (1994), Modern Quantum Mechanics (2nd Edition), Addison Wesley.
Sason, I (2013), ‘Entropy bounds for discrete random variables via maximal coupling’, IEEE Transactions on Information Theory 59(11), 7118–7131. arXiv:1209.5259.Google Scholar
Savov, I (2008), ‘Distributed compression and squashed entanglement’, Master's thesis, McGill University. arXiv:0802.0694.
Savov, I (2012), ‘Network information theory for classical–quantum channels’, PhD thesis, McGill University, School of Computer Science. arXiv:1208.4188.
Savov, I & Wilde, M. M (2015), ‘Classical codes for quantum broadcast channels’, IEEE Transactions on Information Theory 61(12), 7017–7028. arXiv:1111.3645.Google Scholar
Scarani, V (2013), ‘The device-independent outlook on quantum physics (lecture notes on the power of Bell's theorem)’. arXiv:1303.3081.
Scarani, V., Bechmann-Pasquinucci, H, Cerf, N. J, Dušek, M, Lütkenhaus, N & Peev, M (2009), ‘The security of practical quantum key distribution’, Reviews of Modern Physics 81(3), 1301–1350. arXiv:0802.4155.Google Scholar
Scarani, V., Iblisdir, S, Gisin, N & Acín, A (2005), ‘Quantum cloning’, Reviews of Modern Physics 77(4), 1225–1256. arXiv:quant-ph/0511088.Google Scholar
Schrödinger, E (1926), ‘Quantisierung als eigenwertproblem’, Annalen der Physik 79, 361–376.CrossRefGoogle Scholar
Schrödinger, E (1935), ‘Discussion of probability relations between separated systems’, Proceedings of the Cambridge Philosophical Society 31, 555–563.CrossRefGoogle Scholar
Schumacher, B (1995), ‘Quantum coding’, Physical Review A 51(4), 2738–2747.CrossRefGoogle Scholar
Schumacher, B (1996), ‘Sending entanglement through noisy quantum channels’, Physical Review A 54(4), 2614–2628.CrossRefGoogle Scholar
Schumacher, B & Nielsen, M. A (1996), ‘Quantum data processing and error correction’, Physical Review A 54(4), 2629–2635. arXiv:quant-ph/9604022.Google Scholar
Schumacher, B & Westmoreland, M. D (1997), ‘Sending classical information via noisy quantum channels’, Physical Review A 56(1), 131–138.CrossRefGoogle Scholar
Schumacher, B & Westmoreland, M. D (1998), ‘Quantum privacy and quantum coherence’, Physical Review Letters 80(25), 5695–5697. arXiv:quant-ph/9709058.Google Scholar
Schumacher, B & Westmoreland, M. D (2002), ‘Approximate quantum error correction’, Quantum Information Processing 1(1/2), 5–12. arXiv:quant-ph/0112106.Google Scholar
Sen, P (2011), ‘Achieving the Han–Kobayashi inner bound for the quantum interference channel by sequential decoding’. arXiv:1109.0802.
Seshadreesan, K.P., Berta, M & Wilde, M. M (2015), ‘Rényi squashed entanglement, discord, and relative entropy differences’, Journal of Physics A: Mathematical and Theoretical 48(39), 395303. arXiv:1410.1443.Google Scholar
Seshadreesan, K.P., Takeoka, M & Wilde, M. M (2015), ‘Bounds on entanglement distillation and secret key agreement for quantum broadcast channels’, IEEETransactions on Information Theory 62(5), May 2016, 2849–2866. arXiv:1503.08139.Google Scholar
Seshadreesan, K.P. & Wilde, M. M (2015), ‘Fidelity of recovery, squashed entanglement, and measurement recoverability’, Physical Review A 92(4), 042321. arXiv:1410.1441.Google Scholar
Shannon, C.E. (1948), ‘A mathematical theory of communication’, Bell System Technical Journal 27, 379–423.CrossRefGoogle Scholar
Shor, P.W. (1994), ‘Algorithms for quantum computation: Discrete logarithms and factoring’, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, California, pp. 124–134.CrossRef
Shor, P.W. (1995), ‘Scheme for reducing decoherence in quantum computer memory’, Physical Review A 52(4), R2493–R2496.Google Scholar
Shor, P.W. (1996), ‘Fault-tolerant quantum computation’, Annual IEEE Symposium on Foundations of Computer Science p. 56. arXiv:quant-ph/9605011.Google Scholar
Shor, P.W. (2002a), ‘Additivity of the classical capacity of entanglement-breaking quantum channels’, Journal of Mathematical Physics 43(9), 4334–4340. arXiv:quantph/ 0201149.Google Scholar
Shor, P.W. (2002b), ‘The quantum channel capacity and coherent information’, in Lecture Notes, MSRI Workshop on Quantum Computation.
Shor, P.W. (2004a), ‘Equivalence of additivity questions in quantum information theory’, Communications in Mathematical Physics 246(3), 453–472. arXiv:quantph/0305035.Google Scholar
Shor, P.W. (2004b), Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the occasion of his 60th Birthday): The classical capacity achievable by a quantum channel assisted by limited entanglement, Rinton Press, Inc. arXiv:quantph/0402129.
Smith, G (2006), ‘Upper and Lower Bounds on Quantum Codes’, PhD thesis, California Institute of Technology.
Smith, G (2008), ‘Private classical capacity with a symmetric side channel and its application to quantum cryptography’, Physical Review A 78(2), 022306. arXiv:0705.Google Scholar
Smith, G., Renes, J. M & Smolin, J. A (2008), ‘Structured codes improve the Bennett–Brassard-84 quantum key rate’, Physical Review Letters 100(17), 170502. arXiv:quant-ph/0607018.Google Scholar
Smith, G & Smolin, J. A (2007), ‘Degenerate quantum codes for Pauli channels’, Physical Review Letters 98(3), 030501. arXiv:quant-ph/0604107.Google Scholar
Smith, G., Smolin, J. A & Yard, J (2011), ‘Quantum communication with Gaussian channels of zero quantum capacity’, Nature Photonics 5, 624–627. arXiv:1102.4580.Google Scholar
Smith, G & Yard, J (2008), ‘Quantum communication with zero-capacity channels’, Science 321(5897), 1812–1815. arXiv:0807.4935.Google Scholar
Steane, A.M. (1996), ‘Error correcting codes in quantum theory’, Physical Review Letters 77(5), 793–797.CrossRefGoogle Scholar
Stein, E.M. (1956), ‘Interpolation of linear operators’, Transactions of the American Mathematical Society 83(2), 482–492.CrossRefGoogle Scholar
Stinespring, W.F. (1955), ‘Positive functions on C*-algebras’, Proceedings of the American Mathematical Society 6, 211–216.Google Scholar
Sutter, D., Fawzi, O & Renner, R (2016), ‘Universal recovery map for approximate markov chains’, Proceedings of the Royal Society A 472(2186). arXiv:1504.07251.Google Scholar
Sutter, D., Tomamichel, M & Harrow, A. W (2015), ‘Strengthened monotonicity of relative entropy via pinched Petz recovery map’, IEEE Transactions on Information Theory 62(5), 2016, 2907–2913. arXiv:1507.00303.Google Scholar
Tomamichel, M (2012), ‘A Framework for Non-Asymptotic Quantum Information Theory’, PhD thesis, ETH Zurich. arXiv:1203.2142.
Tomamichel, M (2016), Quantum Information Processing with Finite Resources — Mathematical Foundations, Vol. 5 of SpringerBriefs in Mathematical Physics, Springer. arXiv:1504.00233.
Tomamichel, M., Berta, M & Renes, J. M (2015), ‘Quantum coding with finite resources’, Nature Communications 7:11419 (2016). arXiv:1504.04617.Google Scholar
Tomamichel, M., Colbeck, R & Renner, R (2009), ‘A fully quantum asymptotic equipartition property’, IEEE Transactions on Information Theory 55(12), 5840–5847. arXiv:0811.1221.Google Scholar
Tomamichel, M., Colbeck, R & Renner, R (2010), ‘Duality between smooth minand max-entropies’, IEEE Transactions on Information Theory 56(9), 4674–4681. arXiv:0907.5238.Google Scholar
Tomamichel, M & Renner, R (2011), ‘Uncertainty relation for smooth entropies’, Physical Review Letters 106(11), 110506. arXiv:1009.2015.Google Scholar
Tomamichel, M & Tan, V.Y.F. (2015), ‘Second-order asymptotics for the classical capacity of image-additive quantum channels’, Communications in Mathematical Physics 338(1), 103–137. arXiv:1308.6503.Google Scholar
Tomamichel, M., Wilde, M. M & Winter, A (2014), ‘Strong converse rates for quantum communication’. arXiv:1406.2946.
Tsirelson, B.S. (1980), ‘Quantum generalizations of Bell's inequality’, Letters in Mathematical Physics 4(2), 93–100.Google Scholar
Tyurin, I.S. (2010), ‘An improvement of upper estimates of the constants in the Lyapunov theorem’, Russian Mathematical Surveys 65(3), 201–202.Google Scholar
Uhlmann, A (1976), ‘The “transition probability” in the state space of a *-algebra’, Reports on Mathematical Physics 9(2), 273–279.CrossRefGoogle Scholar
Uhlmann, A (1977), ‘Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory’, Communications in Mathematical Physics 54(1), 21–32.CrossRefGoogle Scholar
Umegaki, H (1962), ‘Conditional expectations in an operator algebra IV (entropy and information)’, Kodai Mathematical Seminar Reports 14(2), 59–85.CrossRefGoogle Scholar
Unruh, W.G. (1995), ‘Maintaining coherence in quantum computers’, Physical Review A 51(2), 992–997. arXiv:hep-th/9406058.Google Scholar
Vedral, V & Plenio, M. B (1998), ‘Entanglement measures and purification procedures’, Physical Review A 57(3), 1619–1633. arXiv:quant-ph/9707035.Google Scholar
von Kretschmann, D (2007), ‘Information Transfer through Quantum Channels’, PhD thesis, Technische Universität Braunschweig.
von Neumann, J (1996), Mathematical Foundations of Quantum Mechanics, Princeton University Press.
Wang, L & Renner, R (2012), ‘One-shot classical–quantum capacity and hypothesis testing’, Physical Review Letters 108(20), 200501. arXiv:1007.5456.Google Scholar
Watrous, J (2015), Theory of Quantum Information. Available at https://cs.uwaterloo.ca/∼watrous/TQI/.
Wehrl, A (1978), ‘General properties of entropy’, Reviews of Modern Physics 50(2), 221–260.CrossRefGoogle Scholar
Werner, R.F. (1989), ‘Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model’, Physical Review A 40(8), 4277–4281.CrossRefGoogle Scholar
Wiesner, S (1983), ‘Conjugate coding’, SIGACT News 15(1), 78–88.CrossRefGoogle Scholar
Wilde, M.M. (2011), ‘Comment on “Secret-key-assisted private classical communication capacity over quantum channels”’, Physical Review A 83(4), 046303.Google Scholar
Wilde, M.M. (2013), ‘Sequential decoding of a general classical–quantum channel’, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 469(2157). arXiv:1303.0808.Google Scholar
Wilde, M.M. (2014), ‘Multipartite quantum correlations and local recoverability’, Proceedings of the Royal Society A 471, 20140941. arXiv:1412.0333.Google Scholar
Wilde, M.M. (2015), ‘Recoverability in quantum information theory’, Proceedings of the Royal Society A 471(2182), 20150338. arXiv:1505.04661.Google Scholar
Wilde, M.M. & Brun, T. A (2008), ‘Unified quantum convolutional coding’, in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ontario, Canada, pp. 359–363. arXiv:0801.0821.
Wilde, M.M. & Guha, S (2012), ‘Explicit receivers for pure-interference bosonic multiple access channels’, Proceedings of the 2012 International Symposium on Information Theory and its Applications pp. 303–307. arXiv:1204.0521.Google Scholar
Wilde, M.M., Hayden, P, Buscemi, F & Hsieh, M-H. (2012), ‘The informationtheoretic costs of simulating quantum measurements’, Journal of Physics A: Mathematical and Theoretical 45(45), 453001. arXiv:1206.4121.Google Scholar
Wilde, M.M., Hayden, P & Guha, S (2012a), ‘Information trade-offs for optical quantum communication’, Physical Review Letters 108(14), 140501. arXiv:1105.0119.Google Scholar
Wilde, M.M., Hayden, P & Guha, S (2012b), ‘Quantum trade-off coding for bosonic communication’, Physical Review A 86(6), 062306. arXiv:1105.0119.Google Scholar
Wilde, M.M. & Hsieh, M-H. (2010), ‘Entanglement generation with a quantum channel and a shared state’, Proceedings of the 2010 IEEE International Symposium on Information Theory pp. 2713–2717. arXiv:0904.1175.Google Scholar
Wilde, M.M. & Hsieh, M-H. (2012a), ‘Public and private resource trade-offs for a quantum channel’, Quantum Information Processing 11(6), 1465–1501. arXiv:1005.3818.Google Scholar
Wilde, M.M. & Hsieh, M-H. (2012b), ‘The quantum dynamic capacity formula of a quantum channel’, Quantum Information Processing 11(6), 1431–1463. arXiv:1004.0458.Google Scholar
Wilde, M.M., Krovi, H & Brun, T. A (2007), ‘Coherent communication with continuous quantum variables’, Physical Review A 75(6), 060303(R). arXiv:quantph/0612170.Google Scholar
Wilde, M.M., Renes, J. M & Guha, S (2016), ‘Second-order coding rates for pure-loss bosonic channels’, Quantum Information Processing 15(3), 1289–1308. arXiv:1408.5328.Google Scholar
Wilde, M.M. & Savov, I (2012), ‘Joint source-channel coding for a quantum multiple access channel’, Journal of Physics A: Mathematical and Theoretical 45(43), 435302. arXiv:1202.3467.Google Scholar
Wilde, M.M. & Winter, A (2014), ‘Strong converse for the quantum capacity of the erasure channel for almost all codes’, Proceedings of the 9th Conference on the Theory of Quantum Computation, Communication and Cryptography. arXiv:1402.3626.
Wilde, M.M., Winter, A & Yang, D (2014), ‘Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy’, Communications in Mathematical Physics 331(2), 593–622. arXiv:1306.1586.Google Scholar
Winter, A (1999a), ‘Coding theorem and strong converse for quantum channels’, IEEETransactions on Information Theory 45(7), 2481–2485. arXiv:1409.2536.Google Scholar
Winter, A (1999b), ‘Coding Theorems of Quantum Information Theory’, PhD thesis, Universität Bielefeld. arXiv:quant-ph/9907077.
Winter, A (2001), ‘The capacity of the quantum multiple access channel’, IEEETransactions on Information Theory 47(7), 3059–3065. arXiv:quant-ph/9807019.Google Scholar
Winter, A (2004), “‘Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures’, Communications in Mathematical Physics 244(1), 157–185. arXiv:quant-ph/0109050.Google Scholar
Winter, A (2007), ‘The maximum output p-norm of quantum channels is not multiplicative for any p > 2’. arXiv:0707.0402.
Winter, A (2015a), ‘Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints’. arXiv:1507.07775.
Winter, A (2015b), ‘Weak locking capacity of quantum channels can be much larger than private capacity’, Journal of Cryptology pp. 1–21. arXiv:1403.6361.Google Scholar
Winter, A & Li, K (2012), ‘A stronger subadditivity relation?’, www.maths.bris.ac. uk/$\sim$csajw/stronger$_$subadditivity.pdf.
Winter, A & Massar, S (2001), ‘Compression of quantum-measurement operations’, Physical Review A 64(1), 012311. arXiv:quant-ph/0012128.Google Scholar
Wolf, M.M., Cubitt, T. S & Perez-Garcia, D (2011), ‘Are problems in quantum information theory (un)decidable?’. arXiv:1111.5425.
Wolf, M.M. & Pérez-García, D (2007), ‘Quantum capacities of channels with small environment’, Physical Review A 75(1), 012303. arXiv:quant-ph/0607070.Google Scholar
Wolf, M.M., Pérez-García, D & Giedke, G (2007), ‘Quantum capacities of bosonic channels’, Physical Review Letters 98(13), 130501. arXiv:quant-ph/0606132.Google Scholar
Wolfowitz, J (1978), Coding theorems of information theory, Springer-Verlag.
Wootters, W.K. & Zurek, W. H (1982), ‘A single quantum cannot be cloned’, Nature 299, 802–803.CrossRefGoogle Scholar
Wyner, A.D. (1975), ‘The wire-tap channel’, Bell System Technical Journal 54(8), 1355–1387.CrossRefGoogle Scholar
Yard, J (2005), ‘Simultaneous classical–quantum capacities of quantum multiple access channels’, PhD thesis, Stanford University, Stanford, CA. arXiv:quant-ph/0506050.
Yard, J & Devetak, I (2009), ‘Optimal quantum source coding with quantum side information at the encoder and decoder’, IEEE Transactions on Information Theory 55(11), 5339–5351. arXiv:0706.2907.Google Scholar
Yard, J., Devetak, I & Hayden, P (2005), ‘Capacity theorems for quantum multiple access channels’, in Proceedings of the International Symposium on Information Theory, Adelaide, Australia, pp. 884–888. arXiv:cs/0508031.
Yard, J., Hayden, P & Devetak, I (2008), ‘Capacity theorems for quantum multipleaccess channels: Classical–quantum and quantum–quantum capacity regions’, IEEETransactions on Information Theory 54(7), 3091–3113. arXiv:quant-ph/0501045.Google Scholar
Yard, J., Hayden, P & Devetak, I (2011), ‘Quantum broadcast channels’, IEEETransactions on Information Theory 57(10), 7147–7162. arXiv:quant-ph/0603098.Google Scholar
Ye, M-Y., Bai, Y-K. & Wang, Z. D (2008), ‘Quantum state redistribution based on a generalized decoupling’, Physical Review A 78(3), 030302. arXiv:0805.1542.Google Scholar
Yen, B.J. & Shapiro, J. H (2005), ‘Multiple-access bosonic communications’, Physical Review A 72(6), 062312. arXiv:quant-ph/0506171.Google Scholar
Yeung, R.W. (2002), A First Course in Information Theory, Information Technology: Transmission, Processing, and Storage, Springer (Kluwer Academic/Plenum Publishers), New York, NY.
Zhang, L (2014), ‘A lower bound of quantum conditional mutual information’, J. Phys. A: Math. Theor. 47(2014) 415303. arXiv:1403.1424.Google Scholar
Zhang, Z (2007), ‘Estimating mutual information via Kolmogorov distance’, IEEE Transactions on Information Theory 53(9), 3280–3282.CrossRefGoogle Scholar
Zurek, W.H. (2000), ‘Einselection and decoherence from an information theory perspective’, Annalen der Physik 9(11–12), 855–864. arXiv:quant-ph/0011039.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 16 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316809976.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 16 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316809976.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 16 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316809976.033
Available formats
×