Book contents
- Frontmatter
- Contents
- Introduction
- Lectures on Cyclotomic Hecke Algebras
- An Introduction to Group Doublecross Products and Some Uses
- Canonical Bases and Piecewise-linear Combinatorics
- Integrable and Weyl Modules for Quantum Affine sl2
- Notes on Balanced Categories and Hopf Algebras
- Lectures on the dynamical Yang-Baxter Equations
- Quantized Primitive Ideal Spaces as Quotients of Affine Algebraic Varietie
- Representations of Semisimple Lie Algebras in Positive Characteristic and Quantum Groups at Roots of Unity
- The Yang-Baxter Equation for Operators on Function Fields
- Noncommutative Differential Geometry and Twisting of Quantum Groups
- Finite Quantum Groups and Pointed Hopf Algebras
- On Some Two Parameter Quantum and Jordanian Deformations, and their Coloured Extensions
- Tensor Categories and Braid Representations
Representations of Semisimple Lie Algebras in Positive Characteristic and Quantum Groups at Roots of Unity
Published online by Cambridge University Press: 05 November 2009
- Frontmatter
- Contents
- Introduction
- Lectures on Cyclotomic Hecke Algebras
- An Introduction to Group Doublecross Products and Some Uses
- Canonical Bases and Piecewise-linear Combinatorics
- Integrable and Weyl Modules for Quantum Affine sl2
- Notes on Balanced Categories and Hopf Algebras
- Lectures on the dynamical Yang-Baxter Equations
- Quantized Primitive Ideal Spaces as Quotients of Affine Algebraic Varietie
- Representations of Semisimple Lie Algebras in Positive Characteristic and Quantum Groups at Roots of Unity
- The Yang-Baxter Equation for Operators on Function Fields
- Noncommutative Differential Geometry and Twisting of Quantum Groups
- Finite Quantum Groups and Pointed Hopf Algebras
- On Some Two Parameter Quantum and Jordanian Deformations, and their Coloured Extensions
- Tensor Categories and Braid Representations
Summary
Introduction
If A is a finite dimensional algebra then its blocks are in one-to-one correspondence with its primitive central idempotents. The aim of this paper is to study this interaction for a class of noetherian algebras arising naturally in representation theory. This class includes the universal enveloping algebra of a reductive Lie algebra in positive characteristic and its quantised counterpart, the quantised enveloping algebra of a Borel subalgebra and the quantised function algebra of a semisimple algebraic group at roots of unity.
More generally this paper is concerned with the role the centre of these algebras plays in their representation theory. The techniques used fall into two categories: local and global. The local approach is concerned principally with the behaviour of certain finite dimensional factors of these noetherian algebras whilst the global approach focuses on general properties of these algebras. The aim in both cases is to understand the structure of these finite dimensional factor algebras. In the first case we use a little deformation theory to piece things together whilst in the second case we can use some geometric tools before passing to the factors.
In Section 2 we introduce the class of algebras we wish to study and present some general properties these have in common. In the following three sections we apply this theory to the study of enveloping algebras and quantised enveloping algebras of Lie algebras and to quantised function algebras.
- Type
- Chapter
- Information
- Quantum Groups and Lie Theory , pp. 149 - 167Publisher: Cambridge University PressPrint publication year: 2002
- 2
- Cited by