Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:58:43.366Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Yuri V. Kovchegov
Affiliation:
Ohio State University
Eugene Levin
Affiliation:
Tel-Aviv University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovsky, V. A., Gribov, V. N., and Kancheli, O. V. (1973), Character of inclusive spectra and fluctuations produced in inelastic procesesses by multi-Pomeron exchange, Sov. J. Nucl. Phys. 18, 308Google Scholar
[Yad. Fiz. 18 (1973) 595].
Abramowicz, H., and Dainton, J. B. (1996), On the energy dependence of the deep inelastic diffractive cross-section, J. Phys. G22, 911.CrossRefGoogle Scholar
Abramowicz, H., and Caldwell, A. (1999), HERA collider physics, Rev. Mod. Phys. 71, 1275.CrossRefGoogle Scholar
Albacete, J. L., Armesto, N., Kovner, A., Salgado, C. A., and Wiedemann, U. A. (2004), Energy dependence of the Cronin effect from nonlinear QCD evolution, Phys. Rev. Lett. 92, 082 001.CrossRefGoogle ScholarPubMed
Albacete, J. L., Armesto, N., Milhano, J. G., Salgado, C. A., and Wiedemann, U. A. (2005), Numerical analysis of the Balitsky–Kovchegov equation with running coupling: dependence of the saturation scale on nuclear size and rapidity, Phys. Rev. D71, 014 003.Google Scholar
Albacete, J. L., and Kovchegov, Y. V. (2007a), Baryon stopping in proton–nucleus collisions, Nucl. Phys. A781, 122.CrossRefGoogle Scholar
Albacete, J. L., and Kovchegov, Y. V. (2007b), Solving high energy evolution equation including running coupling corrections, Phys. Rev. D781, 125 021.Google Scholar
Albacete, J. L., Armesto, N., Milhano, J. G., and Salgado, C. A. (2009), Non-linear QCD meets data: a global analysis of lepton–proton scattering with running coupling BK evolution, Phys. Rev. D80, 034 031.Google Scholar
Albacete, J. L., Armesto, N., Milhano, J. G., Quiroga Arias, C., and Salgado, C. A. (2011), AAMQS: a non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur. Phys. J. C71, 1705.CrossRefGoogle Scholar
Albacete, J. L., and Dumitru, A. (2011). A model for gluon production in heavy-ion collisions at the LHC with rcBK unintegrated gluon densities, arXiv:1011.5161 [hep-ph].Google Scholar
Alice collaboration Aamodt, K. et al. (2011), Phys. Rev. Lett. 106, 032 301.CrossRef
Altarelli, G., and Parisi, G. (1977), Asymptotic freedom in parton language, Nucl. Phys. B126, 298.CrossRefGoogle Scholar
Altarelli, G., Ball, R. D., and Forte, S. (2006), Perturbatively stable resummed small x evolution kernels, Nucl. Phys. B742, 1.CrossRefGoogle Scholar
Altinoluk, T., Kovner, A., Lublinsky, M., and Peressutti, J. (2009), QCD reggeon field theory for every day: Pomeron loops included, JHEP 0903, 109.CrossRefGoogle Scholar
Amsler, C., et al. (Particle Data Group) (2008), Phys. Lett. B667, 1, and 2009 partial update for the 2010 edition.CrossRef
Armesto, N., Salgado, C. A., and Wiedemann, U. A. (2005), Relating high-energy hepton–hadron, proton–nucleus and nucleus–nucleus collisions through geometric scaling, Phys. Rev. Lett. 94, 022 002 [arXiv/0407018[hep-ph]].CrossRefGoogle ScholarPubMed
Atlas collaboration, Aad, G., et al. (2011). New J. Phys. 13, 053 033.
Avsar, E., Stasto, A. M., Triantafyllopoulos, D. N., and Zaslavsky, D. (2011), Next-to-leading and resummed BFKL evolution with saturation boundary, arXiv:1107.1252 [hep-ph].Google Scholar
Ayala, A. L., Gay Ducati, M. B., and Levin, E. M. (1996), Unitarity boundary for deep inelastic structure functions, Phys. Lett. B388, 188.CrossRefGoogle Scholar
Ayala, A. L., Gay Ducati, M. B., and Levin, E. M. (1997), QCD evolution of the gluon density in a nucleus, Nucl. Phys. B493, 305.CrossRefGoogle Scholar
Ayala, A. L., Gay Ducati, M. B., and Levin, E. M. (1998), Parton densities in a nucleon, Nucl. Phys. B511, 355.CrossRefGoogle Scholar
Baier, R., Dokshitzer, Y. L., Mueller, A. H., Peigne, S., and Schiff, D. (1997), Radiative energy loss and p(T) broadening of high-energy partons in nuclei, Nucl. Phys. B484, 265.CrossRefGoogle Scholar
Baier, R., Kovner, A., and Wiedemann, U. A. (2003), Saturation and parton level Cronin effect: enhancement versus suppression of gluon production in pA and AA collisions, Phys. Rev. B68, 054 009.Google Scholar
Baier, R., Mueller, A. H., and Schiff, D. (2004), Saturation and shadowing in high-energy proton nucleus dilepton production, Nucl. Phys. A741, 358.CrossRefGoogle Scholar
Balitsky, I. I., and Lipatov, L. N. (1978), The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28, 822Google Scholar
[Yad. Fiz. 28 1597].
Balitsky, I. I. (1996), Operator expansion for high-energy scattering, Nucl. Phys. B463, 99.CrossRefGoogle Scholar
Balitsky, I. I. (1998), Scattering of shock waves in QCD, Phys. Rev. D70, 114 030 [arXiv:hepph/0409314].Google Scholar
Balitsky, I. I. (1999a), Factorization for high-energy scattering, Phys. Rev. Lett. 81, 2024.CrossRefGoogle Scholar
Balitsky, I. I. (1999b), Factorization and high-energy effective action, Phys. Rev. D60, 014 020.Google Scholar
Balitsky, I. I., and Belitsky, A. V. (2002), Nonlinear evolution in high density QCD, Nucl. Phys. B629, 290.CrossRefGoogle Scholar
Balitsky, I. I. (2004), Scattering of shock waves in QCD, Phys. Rev. D70, 114 030 [hepph/0409314].Google Scholar
Balitsky, I. I. (2007), Quark contribution to the small-x evolution of color dipole, Phys. Rev. D75, 014 001.Google Scholar
Balitsky, I. I., and Chirilli, G. A. (2008), Next-to-leading order evolution of color dipoles, Phys. Rev. D77, 014 019 [arXiv:0710.4330 [hep-ph]].Google Scholar
Barone, V. and Predazzi, E. (2002), High Energy Particle Diffraction, Springer.CrossRefGoogle Scholar
Bartels, J. (1980), High-energy behavior in a nonabelian gauge theory. 2. First corrections to T (n → m) beyond the leading LNS approximation, Nucl. Phys. B175, 365.CrossRefGoogle Scholar
Bartels, J., Schuler, G. A., and J., Blumlein, J. (1991), A numerical study of the small x behavior of deep inelastic structure functions in QCD, Z. Phys. C50, 91;Google Scholar
Nucl. Phys. Proc. Suppl. 18C, 147.
Bartels, J., and Levin, E. (1992), Solutions to the Gribov–Levin–Ryskin equation in the nonperturbative region, Nucl. Phys. B387, 617.CrossRefGoogle Scholar
Bartels, J. (1993a), Unitarity corrections to the Lipatov pomeron and the small x region in deep inelastic scattering in QCD, Phys. Lett. B298, 204.CrossRefGoogle Scholar
Bartels, J. (1993b), A note on the infrared cutoff dependence of the BFKL pomeron, J. Phys. G19, 1611.CrossRefGoogle Scholar
Bartels, J., and Wusthoff, M. (1995), The triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C66, 157.Google Scholar
Bartels, J., Lotter, H., and Vogt, M. (1996), A numerical estimate of the small-kT region in the BFKL pomeron, Phys. Lett. B373, 215.CrossRefGoogle Scholar
Bartels, J., and Ryskin, M. G. (1997), The space–time picture of the Wee partons and the AGK cutting rules in perturbative QCD, Z. Phys. C76, 241.Google Scholar
Bartels, J., Lipatov, L. N., and Vacca, G. P. (2000). A new odderon solution in perturbative QCD, Phys. Lett. B477, 178.CrossRefGoogle Scholar
Bartels, J., and Kowalski, H. (2001), Diffraction at HERA and the confinement problem, Eur. Phys. J. C19, 693.CrossRefGoogle Scholar
Bartels, J., Braun, M., and Vacca, G. P. (2005), Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C40, 419.CrossRefGoogle Scholar
Bartels, J., Lipatov, L. N., and Vacca, G. P. (2005), Interactions of Reggeized gluons in the Moebius representation, Nucl. Phys. B706, 391.CrossRefGoogle Scholar
Bartels, J., and Kutak, K. (2008), A momentum space analysis of the triple pomeron vertex in pQCD, Eur. Phys. J. C53, 533.CrossRefGoogle Scholar
Bartels, J., Salvadore, M., and Vacca, G. P. (2008), Inclusive 1-jet production cross section at small x in QCD: multiple interactions, JHEP 0806, 032.Google Scholar
Bertsch, G., Brodsky, S. J., Goldhaber, A. S., and Gunion, J. F. (1981), Diffraction excitation in QCD, Phys. Rev. Lett. 47, 297.CrossRefGoogle Scholar
Beuf, G., and Peschanski, R. (2007), Universality of QCD traveling-wave with running coupling, Phys. Rev. D75, 114 001.Google Scholar
Beuf, G. (2010), Universal behavior of the gluon saturation scale at high energy including full NLL BFKL effects, arXiv:1008.0498 [hep-ph].Google Scholar
Bialas, A., Navelet, H., and Peschanski, R. B. (1998), High-mass diffraction in the QCD dipole picture, Phys. Lett. B427, 147.CrossRefGoogle Scholar
Bialas, A., Navelet, H., and Peschanski, R. B. (1999), Diffraction at small M2/Q2 in the QCD dipole picture, Eur. Phys. J. C8, 643.Google Scholar
Bjorken, J. D. (1969), Asymptotic sum rules at infinite momentum, Phys. Rev. 179, 1547.CrossRefGoogle Scholar
Bjorken, J. D., and Paschos, E. A. (1969), Inelastic electron–proton and gamma–proton scattering, and the structure of the nucleon, Phys. Rev. 185, 1975.CrossRefGoogle Scholar
Bjorken, J. D., Kogut, J. B., and Soper, D. E. (1971), Quantum electrodynamics at infinite momentum: scattering from an external field, Phys. Rev. D3, 1382.Google Scholar
Bjorken, J. D., and Kogut, J. B. (1973), Correspondence arguments for high-energy collisions, Phys. Rev. D8, 1341.Google Scholar
Blaettel, B., Baym, G., Frankfurt, L. L., and Strikman, M. (1993), How transparent are hadrons to pions?, Phys. Rev. Lett. 70, 896.CrossRefGoogle Scholar
Blaizot, J. P., Gelis, F., and Venugopalan, R. (2004). High-energy pA collisions in the color glass condensate approach. 2. Quark production, Nucl. Phys. A743, 57.CrossRefGoogle Scholar
Blaizot, J. P., and Mehtar-Tani, Y. (2009), The classical field created in early stages of high energy nucleus–nucleus collisions, Nucl. Phys. A818, 97.CrossRefGoogle Scholar
Blaizot, J. P., Lappi, T., and Mehtar-Tani, Y. (2010), On the gluon spectrum in the glasma, Nucl. Phys. A846, 62.Google Scholar
Bondarenko, S., Kozlov, M., and Levin, E. (2003), QCDsaturation in the semiclassical approach, Nucl. Phys. A727, 139.CrossRefGoogle Scholar
Bopp, F. W., Engel, R., Ranft, J., and Roesler, S. (2007), Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion, arXiv:0706.3875 [hep-ph].Google Scholar
Boreskov, K.G., Kaidalov, A. B., and Kancheli, O.V. (2006), Strong interactions at high energies in the Reggeon approach, Phys. Atom. Nucl. 69, 1765.CrossRefGoogle Scholar
Brahms collaboration, Bearden, I. G., et al. (2002), Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Phys. Rev. Lett. 88, 202 301.CrossRefGoogle ScholarPubMed
Brahms collaboration, Arsene, I., et al. (2004), Phys. Rev. Lett. 93, 242 303.CrossRef
Bramson, M. (1983), Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Am. Math. Soc. 44, 285.Google Scholar
Braun, M. A. (1995), Reggeized gluons with a running coupling constant, Phys. Lett. B348, 190.CrossRefGoogle Scholar
Braun, M. A., and Vacca, G. P. V. (1997), Triple pomeron vertex in the limit Nc → ∞, Eur. Phys. J. C6, 147.Google Scholar
Braun, M. (2000a), Structure function of the nucleus in the perturbative QCD with Nc → ∞ (BFKL pomeron fan diagrams), Eur. Phys. J. C16, 337.CrossRefGoogle Scholar
Braun, M. (2000b), Nucleus nucleus scattering in perturbative QCD with Nc → ∞, Phys. Lett. B483, 115.CrossRefGoogle Scholar
Braun, M. A. (2000c), Inclusive jet production on the nucleus in the parturbative QCD with Nc → ∞, Phys. Lett. B483, 105 [arXiv:hep-ph/00030037].CrossRefGoogle Scholar
Braun, M. (2004), Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C33, 113.CrossRefGoogle Scholar
Braun, M. (2006), Conformal invariant pomeron interaction in the perturbative QCD with large Nc, Phys. Lett. B632, 297.CrossRefGoogle Scholar
Braun, M. A. (2008), Single and double inclusive cross-sections for nucleus–nucleus collisions in the perturbative QCD, Eur. Phys. J. C55, 377.CrossRefGoogle Scholar
Brodsky, S. J., and Farrar, G. R. (1973), Scaling laws at large transverse momentum, Phys. Rev. Lett. 31, 1153.CrossRefGoogle Scholar
Brodsky, S. J., Lepage, G. P., and Mackenzie, P. B. (1983), On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D28, 228.Google Scholar
Brodsky, S. J., and Lepage, G. P. (1989), Exclusive processes in quantum chromodynamics, Adv. Ser. Direct. High Energy Phys. 5, 93.CrossRefGoogle Scholar
Brodsky, S. J., Frankfurt, L., Gunion, J. F., Mueller, A. H., and Strikman, M. (1994), Diffractive leptoproduction of vector mesons in QCD, Phys. Rev. D50, 3134.Google Scholar
Brodsky, S. J., Pauli, H. C., and Pinsky, S. S. (1998), Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301, 299.CrossRefGoogle Scholar
Brodsky, S. J., Fadin, V. S., Kim, V. T., Lipatov, L. N., and Pivovarov, G. B. (1999), The QCD pomeron with optimal renormalization, JETP Lett. 70, 155.CrossRefGoogle Scholar
Buchmuller, W., Gehrmann, T., and Hebecker, A. (1997), Inclusive and diffractive structure functions at small x, Nucl. Phys. B537, 477.Google Scholar
Buchmuller, W., McDermott, M. F., and Hebecker, A. (1999), High-pT jets in diffractive electroproduction, Phys. Lett. B410, 304.Google Scholar
Callan, C. G., and Gross, D. J. (1969), High energy electroproduction and the constitution of the electric current, Phys. Rev. Lett. 22, 156.CrossRefGoogle Scholar
Capua, M., Grothe, M., Ivanov, D. Y., and Kapishin, M. N. (2008), Summary from the working group on “Diffraction and vector mesons” at DIS 2008, arXiv:0901.2409 [hep-ph].Google Scholar
Catani, S., Ciafaloni, M., and Hautmann, F. (1990), Gluon contributions to small x heavy flavor production, Phys. Lett. B242, 97.CrossRefGoogle Scholar
Catani, S., Fiorani, F., and Marchesini, G. (1990a), QCD coherence in initial state radiation, Phys. Lett. B234, 339.CrossRefGoogle Scholar
Catani, S., Fiorani, F., and Marchesini, G. (1990b), Small x behavior of initial state radiation in perturbative QCD, Nucl. Phys. B336, 18.CrossRefGoogle Scholar
Catani, S., Ciafaloni, M., and Hautmann, F. (1991), High-energy factorization and small x heavy flavor production, Nucl. Phys. B366, 135.CrossRefGoogle Scholar
Chen, Z., and Mueller, A. H. (1995), The dipole picture of high-energy scattering, the BFKL equation and many gluon compound states, Nucl. Phys. B451, 579.CrossRefGoogle Scholar
Chew, G. (1961), S-Matrix Theory of Strong Interactions, W. A. Benjamin.Google Scholar
Chew, G. (1966), The Analytic S-Matrix, W. A. Benjamin.Google Scholar
Christ, N. H., Hasslacher, B., and Mueller, A. H. (1972), Light cone behavior of perturbation theory, Phys. Rev. D6, 3543.Google Scholar
Ciafaloni, M. (1988), Coherence effects in initial jets at small q2/s, Nucl. Phys. B96, 49.CrossRefGoogle Scholar
Ciafaloni, M. and Camici, G. (1998), Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B430, 349.CrossRefGoogle Scholar
Ciafaloni, M., Colferai, D., and Salam, G. P. (1999a), Renormalization group improved small-x equation, Phys. Rev. D60, 114 036.Google Scholar
Ciafaloni, M., Colferai, D., and Salam, G. P. (1999b) A collinear model for small-x physics, JHEP 9910, 017.Google Scholar
Ciafaloni, M., Colferai, D., Salam, G. P., and Stasto, A. M. (2003a), Renormalisation group improved small-x Green's function, Phys. Rev. D68, 114 003.Google Scholar
Ciafaloni, M., Colferai, D., Salam, G. P., and Stasto, A. M. (2003b), Tunneling transition to the pomeron regime, Phys. Lett. B541, 314.Google Scholar
Ciafaloni, M. (2005), Small-x QCD: the (improved) perturbative picture, Nucl. Phys. Proc. Suppl. 146, 129.CrossRefGoogle Scholar
CMS collaboration, Khachatryan, V., et al. (2010a), JHEP 1009, 091 [arXiv:1009.4122 [hepex]].
CMS collaboration, Khachatryan, V., et al. (2010b), Phys. Rev. Lett. 105, 022 002.
Collins, J. C., Soper, D. E., and Sterman, G. (1985a), Factorization for short distance hadron–hadron scattering, Nucl. Phys. B261, 104.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., and Sterman, G. (1985b), Transverse momentum distribution in Drell–Yan pair and W and Z boson production, Nucl. Phys. B250, 199.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., and Sterman, G. (1988a), Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5, 1.Google Scholar
Collins, J. C., Soper, D. E., and Sterman, G. (1988b), Soft gluons and factorization, Nucl. Phys. B308, 833.CrossRefGoogle Scholar
Collins, J. C., and Kwiecinski, J. (1990), Shadowing in gluon distributions in the small x region, Nucl. Phys. B335, 89.CrossRefGoogle Scholar
Collins, J. C., and Ellis, R. K. (1991), Heavy quark production in very high-energy hadron collisions, Nucl. Phys. B360, 3.CrossRefGoogle Scholar
Collins, J. C. (2011), Foundations of Perturbative QCD, Cambridge University Press.CrossRefGoogle Scholar
Collins, P. D. B. (1977), An Introduction to Regge Theory and High-Energy Physics, Cambridge University Press.CrossRefGoogle Scholar
Courant, R. and Hilbert, D. (1953), Methods of Mathematical Physics, Interscience.Google Scholar
Cronin, J. W., Frisch, H. J., Shochet, M. J., et al. (1975), Production of hadrons with large transverse momentum at 200 GeV, 300 GeV, and 400 GeV, Phys. Rev. D11, 3105.Google Scholar
CTEQ collaboration, Brock, R., et al. (1995), Handbook of perturbative QCD, Rev. Mod. Phys. 67, 157.Google Scholar
Del Duca, V. (1995), An introduction to the perturbative QCD pomeron and to jet physics at large rapidities, Scientifica Acta 10 (2), 91–139 [arXiv:hep-ph/9503226].Google Scholar
Deng, W. T., Wang, X. N., and Xu, R. (2011), Gluon shadowing and hadron production in heavy-ion collisions at LHC, Phys. Lett. B701, 133 [arXiv:1011.5907 [nucl-th]].CrossRefGoogle Scholar
Devenish, R., and Cooper-Sarkar, A. (2004), Deep Inelastic Scattering, Oxford University Press.Google Scholar
DeWitt, B. S. (1967), Quantum theory of gravity. II. The manifestly covariant theory, Phys. Rev. 162, 1195.CrossRefGoogle Scholar
Diaz Saez, B., and Levin, E. (2011), Violation of the geometric scaling behaviour of the amplitude for running QCD coupling in the saturation region, arXiv:1106.6257 [hep-ph].Google Scholar
Dokshitzer, Y. L. (1977), Calculation of the structure functions for deep inelastic scattering and e+e- annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46, 641Google Scholar
[Zh. Eksp. Teor. Fiz. 73, 1216 (1977)].
Dokshitzer, Y. L., Diakonov, D., and Troian, S. I. (1980), Hard processes in quantum chromodynamics, Phys. Rept. 58, 269.CrossRefGoogle Scholar
Dokshitzer, Y. L., Khoze, V. A., Mueller, A. H., and Troian, S. I. (1991), Basics of Perturbative QCD, Éditions Frontières.Google Scholar
Dokshitzer, Y. L., and Shirkov, D. V. (1995). On exact account of heavy quark thresholds in hard processes, Z. Phys. C67, 449.Google Scholar
Dokshitzer, Y. L., and Kharzeev, D. E. (2004). The Gribov conception of quantum chromodynamics, Ann. Rev. Nucl. Part. Sci. 54, 487 [arXiv:hep-ph/0404216].CrossRefGoogle Scholar
Dominguez, F., Marquet, C., Xiao, B. W., and Yuan, F. (2011). Universality of unintegrated gluon distributions at small x, Phys. Rev. D83, 105 005.Google Scholar
Donnachie, A., and Landshoff, P. V. (1992). Total cross-sections, Phys. Lett. B296, 227.CrossRefGoogle Scholar
Donnachie, S., Dosch, G., and Landshoff, P. (2005), Pomeron Physics and QCD, Cambridge University Press.Google Scholar
Dumitru, A., and Jalilian-Marian, J. (2002). Forward quark jets from protons shattering the colored glass, Phys. Rev. Lett. 89, 022 301.CrossRefGoogle Scholar
Dumitru, A., and McLerran, L. D. (2002). How protons shatter colored glass, Nucl. Phys. A700, 492.CrossRefGoogle Scholar
Dumitru, A., Gelis, F., McLerran, L., and Venugopalan, R. (2008), Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A810, 91.CrossRefGoogle Scholar
Dumitru, A., Dusling, K., Gelis, F., Jalilian-Marian, J., Lappi, T., and Venugopalan, R. (2011a), The ridge in proton–proton collisions at the LHC, Phys. Lett. B697, 21.CrossRefGoogle Scholar
Dumitru, A., Jalilian-Marian, J., Lappi, T., Schenke, B., and Venugopalan, R. (2011b), Renormalization group evolution of multi-gluon correlators in high energy QCD [arXiv:1108.4764 [hep-ph]].Google Scholar
Ellis, J., Kowalski, H., and Ross, D. A. (2008), Evidence for the discrete asymptotically-free BFKL pomeron from HERA data, Phys. Lett. B668, 51.CrossRefGoogle Scholar
Ellis, R. K., Kunszt, Z., and Levin, E. (1994), The evolution of parton distributions at small x, Nucl. Phys. B420, 517.CrossRefGoogle Scholar
Ellis, R. K., Stirling, W. J., and Webber, B. R. (1996), QCD and Collider Physics, Cambridge University Press.CrossRefGoogle Scholar
Ewerz, C. (2003), The odderon in quantum chromodynamics, arXiv:hep-ph/0306137.Google Scholar
Faddeev, L. D., and Popov, V. N. (1967), Feynman diagrams for the Yang–Mills field, Phys. Lett. B25, 29.CrossRefGoogle Scholar
Fadin, V. S., Kuraev, E. A., and Lipatov, L. N. (1975), On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B60, 50.CrossRefGoogle Scholar
Fadin, V. S., Kuraev, E. A., and Lipatov, L. N. (1976), Multi-Reggeon processes in the Yang–Mills theory, Sov. Phys. JETP 44, 443Google Scholar
[Zh. Eksp. Teor. Fiz. 71, 840].
Fadin, V. S., Kuraev, E. A., and Lipatov, L. N. (1977). The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45, 199Google Scholar
[Zh. Eksp. Teor. Fiz. 72, 377].
Fadin, V. S., and Lipatov, L. N. (1989), High-energy production of gluons in a quasi-multi-Regge kinematics, Sov. J. Nucl. Phys. 50, 712Google Scholar
[Yad. Fiz. 50, 1144.]
Fadin, V. S., Kotsky, M. I., and Fiore, R. (1995), Gluon reggeization in QCD in the next-toleading order, Phys. Lett. B359, 181.CrossRefGoogle Scholar
Fadin, V. S., Fiore, R., and Kotsky, M. I. (1996), Gluon Regge trajectory in the two-loop approximation, Phys. Lett. B387, 593 [hep-ph/9605357].CrossRefGoogle Scholar
Fadin, V. S., and Fiore, R. (1998), The generalized nonforward BFKL equation and the bootstrap condition for the gluon Reggeization in the NLLA, Phys. Lett. B440, 359.CrossRefGoogle Scholar
Fadin, V. S., and Lipatov, L. N. (1998), BFKL pomeron in the next-to-leading approximation, Phys. Lett. B429, 127.CrossRefGoogle Scholar
Feinberg, E. L., and Pomeranchuk, I. (1956), High energy inelastic diffraction phenomena, Nuovo Cimento Suppl. 3, 652.CrossRefGoogle Scholar
Ferreiro, E., Iancu, E., Leonidov, A., and McLerran, L. (2002), Nonlinear gluon evolution in the color glass condensate. II, Nucl. Phys. A703, 489.CrossRefGoogle Scholar
Feynman, R. P. (1963), Quantum theory of gravitation, Acta Phys. Polon. 24, 697.Google Scholar
Feynman, R. P. (1969), Very high-energy collisions of hadrons, Phys. Rev. Lett. 23, 1415.CrossRefGoogle Scholar
Feynman, R. P. (1972), Photon–Hadron Interactions, Reading.Google Scholar
Fisher, R. A. (1937), The wave of advance of advantageous genes, Ann. Eugen. 7, 355.CrossRefGoogle Scholar
Forshaw, J. R., and Ross, D. A. (1997), Quantum Chromodynamics and the Pomeron, Cambridge University Press.CrossRefGoogle Scholar
Franco, V., and Glauber, R. J. (1966), High-energy deuteron cross-sections, Phys. Rev. 142, 1195.CrossRefGoogle Scholar
Frankfurt, L. L., and Strikman, M. I. (1988), Hard nuclear processes and microscopic nuclear structure, Phys. Rept. 160, 235.CrossRefGoogle Scholar
Frankfurt, L. L., Miller, G. A., and Strikman, M. (1993), Coherent nuclear diffractive production of mini-jets: illuminating color transparency, Phys. Lett. B304, 1.CrossRefGoogle Scholar
Froissart, M. (1961), Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123, 1053.CrossRefGoogle Scholar
Fritzsch, H., Gell-Mann, M., and Leutwyler, H. (1973), Advantages of the color octet gluon picture, Phys. Lett. B47, 365.CrossRefGoogle Scholar
Gavin, S., McLerran, L., and Moschelli, G. (2009), Long range correlations and the soft ridge in relativistic nuclear collisions, Phys. Rev. C79, 051 902.Google Scholar
Gardi, E., Kuokkanen, J., Rummukainen, K., and Weigert, H. (2007), Running coupling and power corrections in nonlinear evolution at the high-energy limit, Nucl. Phys. A784, 282.CrossRefGoogle Scholar
Gelis, F., and Jalilian-Marian, J. (2002a), Photon production in high-energy proton nucleus collisions, Phys. Rev. D66, 014 021.Google Scholar
Gelis, F., and Jalilian-Marian, J. (2002b), Dilepton production from the color glass condensate, Phys. Rev. D66, 094 014.Google Scholar
Gelis, F., Lappi, T., and Venugopalan, R. (2007), High energy scattering in quantum chromodynamics, Int. J. Mod. Phys. E16, 2595.CrossRefGoogle Scholar
Gelis, F., Lappi, T., and Venugopalan, R. (2008a), High energy factorization in nucleus–nucleus collisions, Phys. Rev. D78, 054 019.Google Scholar
Gelis, F., Lappi, T., and Venugopalan, R. (2008b), High energy factorization in nucleus–nucleus collisions. II. Multigluon correlations, Phys. Rev. D78, 054 020.Google Scholar
Gelis, F., Lappi, T., and Venugopalan, R. (2009), High energy factorization in nucleus–nucleus collisions. 3. Long range rapidity correlations, Phys. Rev. D79, 094 017.Google Scholar
Gelis, F., Iancu, E., Jalilian-Marian, J., and Venugopalan, R. (2010), The color glass condensate, arXiv:1002.0333 [hep-ph].Google Scholar
Georgi, H., and Politzer, H.D. (1974), Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D9, 416.Google Scholar
Glauber, R. J. (1955), Cross-sections in deuterium at high-energies, Phys. Rev. 100, 242.CrossRefGoogle Scholar
Glauber, R. J., and Matthiae, G. (1970), High-energy scattering of protons by nuclei, Nucl. Phys. B21, 135.CrossRefGoogle Scholar
Golec-Biernat, K. J., and Wusthoff, M. (1999a), Saturation in diffractive deep inelastic scattering, Phys. Rev. D60, 114 023.Google Scholar
Golec-Biernat, K. J., and Wusthoff, M. (1999b), Saturation effects in deep inelastic scattering at low Q2 and its implications on diffraction, Phys. Rev. D59, 014 017.Google Scholar
Golec-Biernat, K. J., and Wusthoff, M. (2001), Diffractive parton distributions from the saturation model, Eur. Phys. J. C20, 313.CrossRefGoogle Scholar
Golec-Biernat, K. J., Motyka, L., and Stasto, A. M. (2002). Diffusion into infrared and unitarization of the BFKL pomeron, Phys. Rev. D65, 074 037.Google Scholar
Golec-Biernat, K. J., and Stasto, A.M. (2003), On solutions of the Balitsky–Kovchegov equation with impact parameter, Nucl. Phys. B668, 345 [arXiv:hep-ph/0306279].CrossRefGoogle Scholar
Golec-Biernat, K. J., and Marquet, C. (2005), Testing saturation with diffractive jet production in deep inelastic scattering, Phys. Rev. D71, 114 005.Google Scholar
Golec-Biernat, K. J., and Luszczak, A. (2009). Dipole model analysis of the newest diffractive deep inelastic scattering data, Phys. Rev. D79, 114 010.Google Scholar
Good, M. L., and Walker, W. D. (1960), Diffraction dissociation of beam particles, Phys. Rev. 120, 1857.CrossRefGoogle Scholar
Gorshkov, V. G., Gribov, V. N., Lipatov, L. N., and Frolov, G. V. (1968), Doubly logarithmic asymptotic behavior in quantum electrodynamics, Sov. J. Nucl. Phys. 6, 95Google Scholar
[Yad. Fiz. 6, 129 (1967)].
Gotsman, E., Kozlov, M., Levin, E., Maor, U., and Naftali, E. (2004), Towards a new global QCD analysis: solution to the nonlinear equation at arbitrary impact parameter, Nucl. Phys. A742, 55 [arXiv:hep-ph/0401021].CrossRefGoogle Scholar
Gotsman, E., Levin, E., Maor, U., and Naftali, E. (2005), A modified Balitsky–Kovchegov equation, Nucl. Phys. A750, 391 [arXiv:hep-ph/0411242].CrossRefGoogle Scholar
Gradshteyn, I. S., and Ryzhik, I.M. (1994). Table of Integrals, Series, and Products, fifth edition, Academic Press.Google Scholar
Green, M. B., Schwarz, J. H., and Witten, E. (1987), Superstring theory, Vol. 1, Introduction, Cambridge University Press.Google Scholar
Gribov, V. N., Ioffe, B. L., and Pomeranchuk, I. Y. (1966), What is the range of interactions at high-energies?, Sov. J. Nucl. Phys. 2, 549Google Scholar
[Yad. Fiz. 2, 768 (1965)].
Gribov, V. N. (1968), A Reggeon diagram technique, Sov. Phys. JETP 26, 414Google Scholar
[Zh. Eksp. Teor. Fiz. 53, 654 (1967)].
Gribov, V. N. (1969a), Inelastic processes at super high-energies and the problem of nuclear cross-sections, Sov. J. Nucl. Phys. 9, 369Google Scholar
[Yad. Fiz. 9, 640].
Gribov, V. N. (1969b), Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP 29, 483Google Scholar
[Zh. Eksp. Teor. Fiz. 56, 892].
Gribov, V. N. (1970), Interaction of gamma quanta and electrons with nuclei at high-energies, Sov. Phys. JETP 30, 709Google Scholar
[Zh. Eksp. Teor. Fiz. 57, 1306 (1969)].
Gribov, V. N., and Lipatov, L. N. (1972), Deep inelastic Ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 438Google Scholar
[Yad. Fiz. 15, 781].
Gribov, V. N. (1973), Space–time description of hadron interactions at high energies, in Proc. Moscow 1 ITEP School, Vol. 1 “Elementary particles”, 65 [arXiv:hep-ph/0006158].Google Scholar
Gribov, V. N. (1978), Quantization of non-Abelian gauge theories, Nucl. Phys. B139, 1.CrossRefGoogle Scholar
Gribov, L. V., Levin, E. M., and Ryskin, M. G. (1983), Semihard processes in QCD, Phys. Rept. 100, 1.CrossRefGoogle Scholar
Gross, D. J., and Wilczek, F. (1973). Ultraviolet behavior of non-abelian theories. Phys. Rev. Lett. 30, 1343.CrossRefGoogle Scholar
Gross, D. J. and Wilczek, F. (1974), Asymptotically free gauge theories. 2, Phys. Rev. D9, 980.Google Scholar
Gubser, S. S. (2011), Conformal symmetry and the Balitsky–Kovchegov equation, arXiv:1102.4040 [hep-th].Google Scholar
Gunion, J. F., and Bertsch, G. (1982), Hadronization by color bremsstrahlung, Phys. Rev. D25, 746.Google Scholar
H1 collaboration, Adloff, C., et al. (1997), Inclusive measurement of diffractive deep inelastic ep scattering, Z. Phys. C76, 613.Google Scholar
H1 and ZEUS collaboration, Glasman, C., et al. (2008), Precision measurements of alpha(s) at HERA, J. Phys. Conf. Ser. 110, 022 013 [arXiv:0709.4426 [hep-ex]].CrossRefGoogle Scholar
H1 and ZEUS collaborations, Kapishin, M., et al. (2008), Diffraction and vector meson production at HERA, Fizika B17, 131.Google Scholar
H1 and ZEUS collaboration, Aaron, F. D., et al. (2010), Combined measurement and QCD analysis of the inclusive e+− p scattering cross sections at HERA, JHEP 1001, 109.CrossRefGoogle Scholar
Halzen, F., and Martin, A. D. (1984), Quarks and Leptons: An Introductory Course in Modern Particle Physics, Wiley.Google Scholar
Hatta, Y., Iancu, E., Itakura, K., and McLerran, L. (2005a), Odderon in the color glass condensate, Nucl. Phys. A760, 172.CrossRefGoogle Scholar
Hatta, Y., Iancu, E., McLerran, L., and Stasto, A. (2005b), Color dipoles from bremsstrahlung in QCD evolution at high energy, Nucl. Phys. A762, 272.CrossRefGoogle Scholar
Hatta, Y., Iancu, E., Marquet, C., Soyez, G., and Triantafyllopoulos, D. N. (2006), Diffusive scaling and the high-energy limit of deep inelastic scattering in QCD at large Nc, Nucl. Phys. A773, 95.CrossRefGoogle Scholar
Hatta, Y., Iancu, E., McLerran, L., Stasto, A., and Triantafyllopoulos, D. N. (2006), Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A764, 423.CrossRefGoogle Scholar
Hebecker, A. (2000), Diffraction in deep inelastic scattering, Phys. Rept. 331, 1.CrossRefGoogle Scholar
Heiselberg, H., Baym, G., Blaettel, B., Frankfurt, L. L., and Strikman, M. (1991), Color transparency, color opacity, and fluctuations in nuclear collisions, Phys. Rev. Lett. 67, 2946.CrossRefGoogle ScholarPubMed
Heisenberg, W. (1939), Z. Phys. 113, 61.CrossRef
Heisenberg, W. (1952), Production of mesons as a shock wave problem, Z. Phys. 133, 65.CrossRefGoogle Scholar
Hentschinski, M., Weigert, H., and Schafer, A. (2006), Extension of the color glass condensate approach to diffractive reactions, Phys. Rev. D73, 051 501.Google Scholar
Iancu, E., Leonidov, A., and McLerran, L. D. (2001a), The renormalization group equation for the color glass condensate, Phys. Lett. B510, 133.CrossRefGoogle Scholar
Iancu, E., Leonidov, A., and McLerran, L. D. (2001b), Nonlinear gluon evolution in the color glass condensate. I, Nucl. Phys. A692, 583.CrossRefGoogle Scholar
Iancu, E., and McLerran, L. D. (2001), Saturation and universality in QCD at small x, Phys. Lett. B510, 145.CrossRefGoogle Scholar
Iancu, E., Itakura, K., and McLerran, L. (2002), Geometric scaling above the saturation scale, Nucl. Phys. A708, 327.CrossRefGoogle Scholar
Iancu, E., and Venugopalan, R. (2003), The color glass condensate and high energy scattering in QCD, in Quark Gluon Plasma, eds. Hwa, R. C., and Wang, X. N.World Scientific.Google Scholar
Iancu, E., and Triantafyllopoulos, D. N. (2005), A Langevin equation for high energy evolution with pomeron loops, Nucl. Phys. A756, 419.CrossRefGoogle Scholar
Ioffe, B. L. (1969), Space–time picture of photon and neutrino scattering and electroproduction cross-section asymptotics, Phys. Lett. B30, 123.CrossRefGoogle Scholar
Ioffe, B. L., Fadin, V. S., and Lipatov, L. N. (2010), Quantum Chromodynamics: Perturbative and Nonperturbative Aspects, Cambridge University Press.CrossRefGoogle Scholar
Jackson, J. D. (1998), Classical Electrodynamics, John Wiley & Sons.Google Scholar
Jalilian-Marian, J., Kovner, A., McLerran, L. D., and Weigert, H. (1997a), The intrinsic glue distribution at very small x, Phys. Rev. D55, 5414.Google Scholar
Jalilian-Marian, J., Kovner, A., McLerran, L. D., and Weigert, H. (1997b), The BFKL equation from the Wilson renormalization group, Nucl. Phys. B504, 415.CrossRefGoogle Scholar
Jalilian-Marian, J., Kovner, A., Leonidov, A., and Weigert, H. (1999a), The Wilson renormalization group for low x physics: towards the high density regime, Phys. Rev. D59, 014 014.Google Scholar
Jalilian-Marian, J., Kovner, A., and Weigert, H. (1999b), The Wilson renormalization group for low x physics: gluon evolution at finite parton density, Phys. Rev. D59, 014 015.Google Scholar
Jalilian-Marian, J., and Kovchegov, Y. V. (2004), Inclusive two-gluon and valence quark–gluon production in DIS and pA, Phys. Rev. D70, 114 017Google Scholar
[Erratum: Jalilian-Marian, J., and Kovchegov, Y. V. (2004), Inclusive two-gluon and valence quark–gluon production in DIS and pA, Phys. Rev. D71, 079 901].Google Scholar
Jalilian-Marian, J., and Kovchegov, Y. V. (2006), Saturation physics and deuteron gold collisions at RHIC, Prog. Part. Nucl. Phys. 56, 104.CrossRefGoogle Scholar
Jaroszewicz, T. (1980). Infrared divergences and Regge behavior in QCD, Acta Phys. Polon. B11, 965.Google Scholar
Katz, U. F. (2000), Deep inelastic positron proton scattering in the high-momentum-transfer regime of HERA, in Springer Tracts Mod. Phys. Vol. 168, pp. 1.Google Scholar
Kharzeev, D., and Levin, E. (2001), Manifestations of high density QCD in the first RHIC data, Phys. Lett. B523, 79.CrossRefGoogle Scholar
Kharzeev, D., and Nardi, M. (2001), Hadron production in nuclear collisions at RHIC and high density QCD, Phys. Lett. B507, 121.CrossRefGoogle Scholar
Kharzeev, D., Kovchegov, Y. V., and Levin, E. (2002), Instantons in the saturation environment, Nucl. Phys. A699, 745.CrossRefGoogle Scholar
Kharzeev, D., Kovchegov, Y. V., and Tuchin, K. (2003). Cronin effect and high pT suppression in pA collisions, Phys. Rev. D68, 094 013.Google Scholar
Kharzeev, D., Levin, E., and McLerran, L. (2003), Parton saturation and Npart scaling of semi-hard processes in QCD, Phys. Lett. B561, 93.CrossRefGoogle Scholar
Kharzeev, D., Kovchegov, Y. V., and Tuchin, K. (2004). Phys. Lett. B599, 23.CrossRef
Kharzeev, D., Levin, E., and Nardi, M. (2004), QCD saturation and deuteron nucleus collisions, Nucl. Phys. A730, 448CrossRefGoogle Scholar
[Erratum: Kharzeev, D., Levin, E., and Nardi, M. (2004), QCD saturation and deuteron nucleus collisions, Nucl. Phys. A743, 329].CrossRefGoogle Scholar
Kharzeev, D., Levin, E., and McLerran, L. (2005), Jet azimuthal correlations and parton saturation in the color glass condensate, Nucl. Phys. A748, 627.CrossRefGoogle Scholar
Kharzeev, D., Levin, E., and Nardi, M. (2005a), Color glass condensate at the LHC: hadron multiplicities in pp, pA and AA collisions, Nucl. Phys. A747, 609.CrossRefGoogle Scholar
Kharzeev, D., Levin, E., and Nardi, M. (2005b), The onset of classical QCD dynamics in relativistic heavy ion collisions, Phys. Rev. C71, 054 903.Google Scholar
Khoze, V. A., Martin, A. D., Ryskin, M. G., and Stirling, W. J. (2004), The spread of the gluon kt -distribution and the determination of the saturation scale at hadron colliders in resummed NLL BFKL, Phys. Rev. D70, 074 013.Google Scholar
Khriplovich, I. B. (1969), Green's functions in theories with non-abelian gauge group, Yad. Fiz. 10, 409.Google Scholar
Kolb, P. F., and Heinz, U. W. (2003), Hydrodynamic description of ultrarelativistic heavy ion collisions, invited review, in Quark Gluon Plasma, Vol. 3, pp. 634–714, eds. Hwa, R. C., and Wang, X. N.World Scientific [arXiv:nucl-th/0305084].Google Scholar
Kolmogorov, A., Petrovsky, I., and Piskunov, N. (1937), Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Moscow Univ. Bull. Math. A1, 1.Google Scholar
Kopeliovich, B. Z., Lapidus, L., and Zamolodchikov, A. (1981), Dynamics of color in hadron diffraction on nuclei, JETP Lett. 33, 595Google Scholar
[Pisma Zh. Eksp. Teor. Fiz. 33, 612].
Kopeliovich, B. Z., Tarasov, A. V., and Schafer, A. (1999), Bremsstrahlung of a quark propagating through a nucleus, Phys. Rev. C59, 1609.Google Scholar
Kopeliovich, B. Z., Raufeisen, J., Tarasov, A. V., and Johnson, M. B. (2003), Nuclear effects in the Drell–Yan process at very high-energies, Phys. Rev. C67, 014 903.Google Scholar
Kopeliovich, B. Z., Potashnikova, I. K., and Schmidt, I. (2007), Diffraction in QCD, Braz. J. Phys. 37, 473.CrossRefGoogle Scholar
Korchemsky, G. P. (1999), Conformal bootstrap for the BFKL pomeron, Nucl. Phys. B550, 397.CrossRefGoogle Scholar
Korchemsky, G. P., Kotanski, J., and Manashov, A. N. (2002), Solution of the multi-Reggeon compound state problem in multicolor QCD, Phys. Rev. Lett. 88, 122 002.CrossRefGoogle ScholarPubMed
Korchemsky, G. P., Kotanski, J., and Manashov, A. N. (2004), Multi-reggeon compound states and resummed anomalous dimensions in QCD, Phys. Lett. B583, 121.CrossRefGoogle Scholar
Kotikov, A. V., and Lipatov, L. N. (2000), NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B582, 19.CrossRefGoogle Scholar
Kovchegov, Y. V. (1996), Non-Abelian Weizsaecker–Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev. D54, 5463.Google Scholar
Kovchegov, Y. V. (1997), Quantum structure of the non-Abelian Weizsacker–Williams field for a very large nucleus, Phys. Rev. D55, 5445.Google Scholar
Kovchegov, Y.V., and Rischke, D. H. (1997), Classical gluon radiation in ultrarelativistic nucleus nucleus collisions, Phys. Rev. C56, 1084.Google Scholar
Kovchegov, Y. V., and Mueller, A. H. (1998a), Gluon production in current nucleus and nucleon nucleus collisions in a quasi-classical approximation, Nucl. Phys. B529, 451.CrossRefGoogle Scholar
Kovchegov, Y. V., and Mueller, A. H. (1998b), Running coupling effects in BFKL evolution, Phys. Lett. B439, 428.CrossRefGoogle Scholar
Kovchegov, Y. V. (1999), Small-xF2 structure function of a nucleus including multiple pomeron exchanges, Phys. Rev. 60, 034 008.Google Scholar
Kovchegov, Y. V., and McLerran, L. D. (1999), Diffractive structure function in a quasi-classical approximation, Phys. Rev. D60, 054 025.Google Scholar
Kovchegov, Y. V. (2000), Unitarization of the BFKL pomeron on a nucleus, Phys. Rev. 61, 074 018.Google Scholar
Kovchegov, Y. V., and Levin, E. (2000), Diffractive dissociation including multiple pomeron exchanges in high parton density QCD, Nucl. Phys. B577, 221.CrossRefGoogle Scholar
Kovchegov, Y. V. (2001), Diffractive gluon production in proton nucleus collisions and in DIS, Phys. Rev. D64, 114 016.Google Scholar
[Erratum: Kovchegov, Y. V. (2001), Diffractive gluon production in proton nucleus collisions and in DIS, Phys. Rev. D68, 039 901 (2003)].Google Scholar
Kovchegov, Y. V., and Tuchin, K. (2002), Inclusive gluon production in DIS at high parton density, Phys. Rev. D65, 074 026.Google Scholar
Kovchegov, Y. V., Szymanowski, L., and Wallon, S. (2004), Perturbative odderon in the dipole model, Phys. Lett. B586, 267.CrossRefGoogle Scholar
Kovchegov, Y. V., and Tuchin, K. (2006), Production of qq pairs in proton–nucleus collisions at high energies, Phys. Rev. D74, 054 014 [arXiv:hep-ph/0603055].Google Scholar
Kovchegov, Y. V., and Weigert, H. (2007a), Triumvirate of running couplings in small-x evolution, Nucl. Phys. A784, 188.CrossRefGoogle Scholar
Kovchegov, Y. V., and Weigert, H. (2007b), Quark loop contribution to BFKL evolution: running coupling and leading-Nf NLO intercept, Nucl. Phys. A789, 260.CrossRefGoogle Scholar
Kovchegov, Y. V., Kuokkanen, J., Rummukainen, K., and Weigert, H. (2009), Subleading-Nc corrections in non-linear small-x evolution, Nucl. Phys. A823, 47.CrossRefGoogle Scholar
Kovner, A., McLerran, L. D., and Weigert, H. (1995a), Gluon production from non-Abelian Weizsacker–Williams fields in nucleus–nucleus collisions, Phys. Rev. D52, 6231.Google Scholar
Kovner, A., McLerran, L. D., and Weigert, H. (1995b), Gluon production at high transverse momentum in the McLerran–Venugopalan model of nuclear structure functions, Phys. Rev. D52, 3809.Google Scholar
Kovner, A., and Milhano, J. G. (2000), Vector potential versus color charge density in low x evolution, Phys. Rev. D61, 014 012.Google Scholar
Kovner, A., Milhano, J. G., and Weigert, H. (2000), Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D62, 114 005.Google Scholar
Kovner, A., and Wiedemann, U. A. (2001), Eikonal evolution and gluon radiation, Phys. Rev. D64, 114 002.Google Scholar
Kovner, A., and Wiedemann, U. A.(2002a), Nonlinear QCD evolution: saturation without unitarization, Phys. Rev. D66, 051 502.Google Scholar
Kovner, A., and Wiedemann, U. A. (2002b), Perturbative saturation and the soft pomeron, Phys. Rev. D66, 034 031.Google Scholar
Kovner, A., and Wiedemann, U. A. (2003), No Froissart bound from gluon saturation, Phys. Lett. B551, 311.CrossRefGoogle Scholar
Kovner, A., and Lublinsky, M. (2005a), In pursuit of Pomeron loops: the JIMWLK equation and the Wess–Zumino term, Phys. Rev. D71, 085 004.Google Scholar
Kovner, A., and Lublinsky, M. (2005b), From target to projectile and back again: selfduality of high energy evolution, Phys. Rev. Lett. 94, 181 603.CrossRefGoogle Scholar
Kovner, A., and Lublinsky, M. (2005c), Dense–dilute duality at work: dipoles of the target, Phys. Rev. 72, 074 023.Google Scholar
Kovner, A., and Lublinsky, M. (2005d), Remarks on high energy evolution, JHEP 0503, 001.Google Scholar
Kovner, A., and Lublinsky, M. (2005e), In pursuit of pomeron loops: the JIMWLK equation and the Wess–Zumino term, Phys. Rev. D71, 085 004.Google Scholar
Kovner, A., and Lublinsky, M. (2006), One gluon, two gluon: multigluon production via high energy evolution, JHEP 0611, 083.Google Scholar
Kovner, A., Lublinsky, M., and Weigert, H. (2006), Treading on the cut: semi inclusive observables at high energy, Phys. Rev. D74, 114 023.Google Scholar
Kovner, A., and Lublinsky, M. (2007), Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 0702, 058 [arXiv:hep-ph/0512316].Google Scholar
Krasnitz, A., and Venugopalan, R. (2000), The initial energy density of gluons produced in very high-energy nuclear collisions, Phys. Rev. Lett. 84, 4309.CrossRefGoogle ScholarPubMed
Krasnitz, A., Nara, Y., and Venugopalan, R. (2001), Coherent gluon production in very highenergy heavy ion collisions, Phys. Rev. Lett.87, 192 302.Google Scholar
Krasnitz, A., and Venugopalan, R. (2001), The initial gluon multiplicity in heavy ion collisions, Phys. Rev. Lett. 86, 1717.CrossRefGoogle ScholarPubMed
Krasnitz, A., Nara, Y., and Venugopalan, R. (2003a), Gluon production in the color glass condensate model of collisions of ultrarelativistic finite nuclei, Nucl. Phys. A717, 268.CrossRefGoogle Scholar
Krasnitz, A., Nara, Y., and Venugopalan, R. (2003b). Classical gluodynamics of high-energy nuclear collisions: an erratumn and an update, Nucl. Phys. A727, 427.CrossRefGoogle Scholar
Krasnitz, A., Nara, Y., and Venugopalan, R. (2003c). Gluon production in the color glass condensate model of collisions of ultrarelativistic finite nuclei, Nucl. Phys. A717, 268.CrossRefGoogle Scholar
Kwiecinski, J., and Praszalowicz, M. (1980), Three gluon integral equation and odd c-singlet Regge singularities in QCD, Phys. Lett. B94, 413.CrossRefGoogle Scholar
Kwiecinski, J., and Stasto, A. M. (2002), Geometric scaling and QCD evolution, Phys. Rev. D66, 014 013.Google Scholar
Laenen, E., Levin, E., and Shuvaev, A. G. (1994), Anomalous dimensions of high twist operators in QCD at N → 1 and large Q2, Nucl. Phys. B419, 39.CrossRefGoogle Scholar
Laenen, E., and Levin, E. (1995), A new evolution equation, Nucl. Phys. B451, 207.CrossRefGoogle Scholar
Landau, L. D., and Pomeranchuk, I.Y. (1955), On point interactions in quantum electrodynamics, Dokl. Akad. Nauk Ser. Fiz. 102, 489.Google Scholar
Landau, L. D., Abrikosov, A., and Halatnikov, L. (1956), On the quantum theory of fields, Nuovo Cim. Suppl. 3, 80.CrossRefGoogle Scholar
Landau, L. D., and Lifshitz, E. M. (1958). Quantum Mechanics, Non-Relativistic Theory, Vols. 2 and 3, Pergamon Press.Google Scholar
Landau, L. D. (1959), On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13, 181.CrossRefGoogle Scholar
Landau, L. D. (1960), in Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli, pp. 245–247, eds. Fierz, M., and Weisskopf, V. F., Interscience.Google Scholar
Lappi, T. (2003), Production of gluons in the classical field model for heavy ion collisions, Phys. Rev. C67, 054 903.Google Scholar
Laycock, P. (2009), Diffraction at H1 and Zeus, arXiv:0906.1525 [hep-ex].Google Scholar
Lepage, G. P., and Brodsky, S. J. (1980), Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D22, 2157.Google Scholar
Levin, E., and Ryskin, M. G. (1981), Production of hadrons with large transverse momenta on nuclei in framework of QCD, Sov. J. Nucl. Phys. 33, 901Google Scholar
[Yad. Fiz. 33, 1673].
Levin, E., and Ryskin, M. G. (1985), Deep inelastic scattering on nuclei at small x, Sov. J. Nucl. Phys. 41, 300Google Scholar
[Yad. Fiz. 41, 472].
Levin, E., and Ryskin, M. G. (1987), Diffraction dissociation on nuclei in the QCD leading logarithmic approximation, Sov. J. Nucl. Phys 45, 150Google Scholar
[Yad. Fiz. 45 234].
Levin, E., and Ryskin, M. G. (1990), High-energy hadron collisions in QCD, Phys. Rept. 189, 267.CrossRefGoogle Scholar
Levin, E., Ryskin, M. G., Shabelski, Yu. M., and Shuvaev, A. G. (1991), Heavy quark production in semihard nucleon interactions, Sov. J. Nucl. Phys. 53, 657Google Scholar
[Yad. Fiz. 53, 1059].
Levin, E., Ryskin, M. G., and Shuvaev, A. G. (1992), Anomalous dimension of the twist four gluon operator and pomeron cuts in deep inelastic scattering, Nucl. Phys. B387, 589.CrossRefGoogle Scholar
Levin, E., and Wusthoff, M. (1994), Photon diffractive dissociation in deep inelastic scattering, Phys. Rev. D50, 4306.Google Scholar
Levin, E. (1995), Renormalons at low x, Nucl. Phys. B453, 303.CrossRefGoogle Scholar
Levin, E. (1999), The BFKL high energy asymptotic in the next-to-leading approximation, Nucl. Phys. B545, 481.CrossRefGoogle Scholar
Levin, E., and Tuchin, K. (2000), Solution to the evolution equation for high parton density QCD, Nucl. Phys. B573, 833.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2001), Non-linear evolution and high energy diffractive production, Phys. Lett. B521, 233.CrossRefGoogle Scholar
Levin, E., and Tuchin, K. (2001), Nonlinear evolution and saturation for heavy nuclei in DIS, Nucl. Phys. A693, 787.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2002a), Diffractive dissociation from non-linear evolution in DIS on nuclei, Nucl. Phys. A712, 95.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2002b), Diffractive dissociation and saturation scale from nonlinear evolution in high energy DIS, Eur. Phys. J. C22, 647.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2004), A linear evolution for nonlinear dynamics and correlations in realistic nuclei, Nucl. Phys. A730, 191.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2005a), Balitsky's hierarchy from Mueller's dipole model and more about target correlations, Phys. Lett. B607, 131.CrossRefGoogle Scholar
Levin, E., and Lublinsky, M. (2005b), Towards a symmetric approach to high energy evolution: generating functional with Pomeron loops, Nucl. Phys. A763, 172.CrossRefGoogle Scholar
Levin, E., Miller, J., and Prygarin, A. (2008), Summing Pomeron loops in the dipole approach, Nucl. Phys. A806, 245.CrossRefGoogle Scholar
Levin, E., and Prygarin, A. (2008), Inclusive gluon production in the dipole approach: AGK cutting rules, Phys. Rev. C78, 065 202.Google Scholar
Levin, E., and Rezaeian, A. H. (2011), Gluon saturation and energy dependence of hadron multiplicity in pp and AA collisions at the LHC, Phys. Rev. D83, 114 001.Google Scholar
Lipatov, L. N. (1974), The parton model and perturbation theory, Sov. J. Nucl. Phys. 20, 94Google Scholar
[Yad. Fiz. 20, 181].
Lipatov, L. N. (1976), Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories, Sov. J. Nucl. Phys. 23, 338Google Scholar
[Yad. Fiz. 23, 642].
Lipatov, L. N. (1986), The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63, 904Google Scholar
[Zh. Eksp. Teor. Fiz. 90, 1536].
Lipatov, L. N. (1989), in Perturbative Quantum Chromodynamics, ed. Mueller, A. H., World Scientific.Google Scholar
Lipatov, L. N. (1997), Small-x physics in perturbative QCD, Phys. Rept. 286, 131.CrossRefGoogle Scholar
Lipatov, L. N. (1999), Hamiltonian for Reggeon interactions in QCD, Phys. Rept. 320, 249.CrossRefGoogle Scholar
Lipatov, L. N. (2009), Integrability of scattering amplitudes in N = 4 SUSY, arXiv:0902.1444 [hep-th].Google Scholar
Low, F. E. (1975), A model of the bare Pomeron, Phys. Rev. D12, 163.Google Scholar
Luo, M., Qiu, J. W., and Sterman, G. (1994a), Anomalous nuclear enhancement in deeply inelastic scattering and photoproduction, Phys. Rev. 50, 1951.Google ScholarPubMed
Luo, M., Qiu, J. W., and Sterman, G. (1994b), Twist four nuclear parton distributions from photoproduction, Phys. Rev. D49, 4493.Google Scholar
Lukaszuk, L., and Martin, A. (1967), Absolute upper bounds for π π scattering, Nuovo Cim. A52, 122.CrossRefGoogle Scholar
Lukaszuk, L., and Nicolescu, B. (1973), A possible interpretation of pp rising total cross-sections, Lett. Nuovo Cim. 8, 405.CrossRefGoogle Scholar
Mandelstam, S. (1958), Determination of the pion – nucleon scattering amplitude from dispersion relations and unitarity: general theory, Phys. Rev. 112, 1344.CrossRefGoogle Scholar
Marage, P. (2009), Vector meson production at HERA, Int. J. Mod. Phys. A24, 237.Google Scholar
Marchesini, G. (1995), QCD coherence in the structure function and associated distributions at small x, Nucl. Phys. B445, 49.CrossRefGoogle Scholar
Marquet, C. (2005), A QCD dipole formalism for forward-gluon production, Nucl. Phys. B705, 319.CrossRefGoogle Scholar
Marquet, C., and Schoeffel, L. (2006), Geometric scaling in diffractive deep inelastic scattering, Phys. Lett. B639, 471.CrossRefGoogle Scholar
Marquet, C. (2007), Forward inclusive dijet production and azimuthal correlations in pA collisions, Nucl. Phys. A796, 41.CrossRefGoogle Scholar
Marquet, C., Peschanski, R. B., and Soyez, G. (2007), Exclusive vector meson production at HERA from QCD with saturation, Phys. Rev. D76, 034 011.Google Scholar
Martin, A. (1969), Scattering Theory: Unitarity, Analyticity and Crossing, Springer-Verlag.Google Scholar
McLerran, L., and Venugopalan, R. (1994a), Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D49, 2233.Google Scholar
McLerran, L., and Venugopalan, R. (1994b), Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D49, 3352.Google Scholar
McLerran, L., and Venugopalan, R. (1994c), Green's functions in the color field of a large nucleus, Phys. Rev. D50, 2225.Google Scholar
McLerran, L. (2005), The color glass condensate and RHIC, Nucl. Phys. A752, 355.CrossRefGoogle Scholar
McLerran, L. (2008), From AGS-SPS and onwards to the LHC, J. Phys. G35, 104 001.Google Scholar
McLerran, L. (2009a), Theoretical concepts for ultra-relativistic heavy ion collisions, arXiv:0911.2987 [hep-ph].Google Scholar
McLerran, L. (2009b), The phase diagram of QCD and some issues of large Nc, Nucl. Phys. Proc. Suppl. 95, 275.CrossRefGoogle Scholar
McLerran, L., and Praszalowicz, M. (2010), Saturation and scaling of multiplicity, mean pT and pT distributions from 200 GeV < √s < 7 TeV, Acta Phys. Polon. B41, 1917.Google Scholar
McLerran, L., and Praszalowicz, M. (2011), Saturation and scaling of multiplicity, mean pT and pT distributions from 200 GeV < √s < 7 TeV, Addendum, Acta Phys. Polon. B42, 99.CrossRefGoogle Scholar
Moschelli, G., Gavin, G., and McLerran, L. (2009), Long range untriggered two particle correlations, Eur. Phys. J. C62, 277.CrossRefGoogle Scholar
Mueller, A. H. (1970), O(2,1) analysis of single particle spectra at high energy, Phys. Rev. D2, 2963.Google Scholar
Mueller, A. H. (1981), Perturbative QCD at high energies, Phys. Rept. 73, 237.CrossRefGoogle Scholar
Mueller, A. H. (1985), On the structure of infrared renormalons in physical processes at highenergies, Nucl. Phys. B250, 327.CrossRefGoogle Scholar
Mueller, A. H., and Qiu, J. W. (1986), Gluon recombination and shadowing at small values of x, Nucl. Phys. B268, 427.CrossRefGoogle Scholar
Mueller, A. H. (1990), Small x behavior and parton saturation: a QCD model, Nucl. Phys. B335, 115.CrossRefGoogle Scholar
Mueller, A. H. (1992), The QCD perturbation series, talk given at the workshop “QCD: 20 years later”, Aachen, 9–13 June 1992.Google Scholar
Mueller, A. H. (1994), Soft gluons in the infinite momentum wave function and the BFKL pomeron, Nucl. Phys. B415, 373.CrossRefGoogle Scholar
Mueller, A. H., and Patel, B. (1994), Single and double BFKL pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B425, 471.CrossRefGoogle Scholar
Mueller, A. H. (1995), Unitarity and the BFKL pomeron, Nucl. Phys. B437, 107.CrossRefGoogle Scholar
Mueller, A. H. (2001), A simple derivation of the JIMWLK equation, Phys. Lett. B523, 243.CrossRefGoogle Scholar
Mueller, A. H., and Triantafyllopoulos, D. N. (2002), The energy dependence of the saturation momentum, Nucl. Phys. B640, 331.CrossRefGoogle Scholar
Mueller, A. H., (2002), Gluon distributions and color charge correlations in a saturated light cone wave function, Nucl. Phys. B643, 501.CrossRefGoogle Scholar
Mueller, A. H. (2003), Nuclear A-dependence near the saturation boundary, Nucl. Phys. A724, 223.CrossRefGoogle Scholar
Mueller, A. H., and Shoshi, A. I. (2004), Small-x physics beyond the Kovchegov equation, Nucl. Phys. B692, 175.CrossRefGoogle Scholar
Mueller, A. H., Shoshi, A. I., and Wong, S. M. H. (2005), Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B715, 440.CrossRefGoogle Scholar
Munier, S., Stasto, A. M., and Mueller, A. H. (2001), Impact parameter dependent S-matrix for dipole proton scattering from diffractive meson electroproduction, Nucl. Phys. B603, 427.CrossRefGoogle Scholar
Munier, S., and Peschanski, R. B. (2003). Geometric scaling as traveling waves, Phys. Rev. Lett. 91, 232 001.CrossRefGoogle ScholarPubMed
Munier, S., and Peschanski, R. B. (2004a), Traveling wave fronts and the transition to saturation, Phys. Rev. D69, 034 008.Google Scholar
Munier, S., and Peschanski, R. B. (2004b), Universality and tree structure of high-energy QCD, Phys. Rev. D70, 077 503.Google Scholar
Munier, S., and Shoshi, A. (2004), Diffractive photon dissociation in the saturation regime from the Good and Walker picture, Phys. Rev. D69, 074 022.Google Scholar
Nardi, M. (2005), Hadronic multiplicity at RHIC (and LHC), J. Phys. Conf. Ser. 5, 148.CrossRefGoogle Scholar
Narison, S. (2002), QCD as a Theory of Hadrons (from Partons to Confinement), Cambridge University Press.Google Scholar
Navelet, H., and Peschanski, R. B. (1997), Conformal invariance and the exact solution of BFKL equations, Nucl. Phys. B507, 353.CrossRefGoogle Scholar
Navelet, H., and Peschanski, R. B. (1999), The elastic QCD dipole amplitude at one loop, Phys. Rev. Lett. 82, 1370.CrossRefGoogle Scholar
Navelet, H., and Peschanski, R. B. (2001), Unifying approach to hard diffraction, Phys. Rev. Lett. 87, 252 002.CrossRefGoogle ScholarPubMed
Nikolaev, N. N., and Zakharov, V. I. (1975), Partonmodel and deep inelastic scattering on nuclei, Phys. Lett. B55, 397.CrossRefGoogle Scholar
Nikolaev, N. N., and Zakharov, B. G. (1991), Colour transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys. C49, 607.Google Scholar
Nikolaev, N. N., and Zakharov, B. G. (1994), The triple pomeron regime and the structure function of the pomeron in the diffractive deep inelastic scattering at very small x, Z. Phys. C64, 631.Google Scholar
Nikolaev, N. N., Zakharov, B. G., and Zoller, V. R. (1994), The s channel approach to Lipatov's pomeron and hadronic cross-sections, JETP Lett. 59, 6.Google Scholar
Nussinov, S. (1976), A perturbative recipe for quark gluon theories and some of its applications, Phys. Rev. D14, 246.Google Scholar
Nussinov, S. (2008), Is the Froissart bound relevant for the total pp cross section at s = (14 TeV)2?, arXiv:0805.1540 [hep-ph].Google Scholar
Peschanski, R. B., Royon, C., and Schoeffel, L. (2005), Confronting next-leading BFKL kernels with proton structure function data, Nucl. Phys. B716, 401.CrossRefGoogle Scholar
Peskin, M. E., and Schroeder, D. V. (1995) An Introduction to Quantum Field Theory, Perseus Books.Google Scholar
PHENIX collaboration, Adare, A., et al. (2011), Phys. Rev. Lett. 107, 172 301 [arXiv:1105.5112 [nucl-ex]].
PHOBOS collaboration, Back, B. B., et al. (2002), Phys. Rev. C65, 061 901(R) [nucl-ex/0201005].
PHOBOS collaboration, Back, B. B., et al. (2003), Phys. Rev. Lett. 91, 052 303 [nucl-ex/0210015].
Politzer, H. D. (1973), Reliable perturbative results for strong interactions?Phys. Rev. Lett. 30, 1346.CrossRefGoogle Scholar
Polyanin, A. D. (2002). Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC.Google Scholar
Polyanin, A.D., and Zaitsev, V. F. (2004), Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC.Google Scholar
Pomeranchuk, I. Y. (1958). Sov. Phys. 7, 499.
Praszalowicz, M. (2011), Geometrical scaling in hadronic collisions, Acta Phys. Polon. B42, 1557.CrossRefGoogle Scholar
Pumplin, J. (1973), Eikonal models for diffraction dissociation on nuclei, Phys. Rev. D8, 2899.Google Scholar
Regge, T. (1959), Introduction to complex orbital momenta, Nuovo Cim. 14, 951.CrossRefGoogle Scholar
Regge, T. (1960), Bound states, shadow states and Mandelstam representation, Nuovo Cim. 18, 947.CrossRefGoogle Scholar
Risken, H. (1989), The Fokker–Planck Equation (Methods of Solution and Applications), Springer-Verlag.CrossRefGoogle Scholar
Roberts, R. G. (1993), The Structure of the Proton: Deep Inelastic Scattering, Cambridge University Press.Google Scholar
Roman, P. (1969), Introduction to Quantum Field Theory, John Wiley & Sons.Google Scholar
Ross, D. A. (1998), The effect of higher order corrections to the BFKL equation on the perturbative pomeron, Phys. Lett. B431, 161.CrossRefGoogle Scholar
Rummukainen, K., and Weigert, H. (2004), Universal features of JIMWLK and BK evolution at small-x, Nucl. Phys. A739, 183.CrossRefGoogle Scholar
Ryskin, M. G. (1993), Diffractive J/ψ electroproduction in LLA QCD, Z. Phys. C57, 89.Google Scholar
Salam, G. P. (1995), Multiplicity distribution of color dipoles at small x, Nucl. Phys. B449, 589.CrossRefGoogle Scholar
Salam, G. P. (1996), Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B461, 512.CrossRefGoogle Scholar
Salam, G. P. (1998), A resummation of large sub-leading corrections at small x, JHEP 9807, 019.Google Scholar
Salam, G. P. (1999), An introduction to leading and next-to-leading BFKL, Acta Phys. Polon. B30, 3679.Google Scholar
Schmidt, C. R. (1999), Rapidity-separation dependence and the large next-to-leading corrections to the BFKL equation, Phys. Rev. D60, 074 003.Google Scholar
Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Co.Google Scholar
Schwimmer, A. (1975), Inelastic rescattering and high-energy reactions on nuclei, Nucl. Phys. 94, 445.CrossRefGoogle Scholar
Stasto, A. M., Golec-Biernat, K., and Kwiecinski, J. (2001), Phys. Rev. Lett. 86, 596.CrossRef
STAR collaboration, Adams, J., et al. (2003), Phys. Rev. Lett. 91, 072 304.
STAR collaboration, Abelev, B. I., et al. (2009), Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C80, 064 912.Google Scholar
Sterman, G. (1993). An Introduction to Quantum Field Theory, Cambridge University Press.CrossRefGoogle Scholar
't Hooft, G. (1972), Unpublished.
't Hooft, G. (1974), A two-dimensional model for mesons, Nucl. Phys. B75, 461.CrossRefGoogle Scholar
't Hooft, G. (1979), Can we make sense out of quantum chromodynamics?, Subnucl. Ser. 15, 943.Google Scholar
van Saarloos, W. (2003), Front propagation into unstable states, Phys. Rept. 386, 29.CrossRefGoogle Scholar
Wiedemann, U. A. (2008), Heavy-ion collisions: selected topics, in Proc. European School of High-Energy Physics 2007, Trest, pp. 277–306.Google Scholar
Weigert, H. (2002), Unitarity at small Bjorken x, Nucl. Phys. A703, 823.CrossRefGoogle Scholar
Weigert, H. (2005), Evolution at small xBj: the color glass condensate, Prog. Part. Nucl. Phys. 55, 461.CrossRefGoogle Scholar
Weigert, H. (2007), A compact introduction to evolution at small x and the color glass condensate, Nucl. Phys. A783, 165.CrossRefGoogle Scholar
Weinberg, S. (1973), Nonabelian gauge theories of the strong interactions, Phys. Rev. Lett. 31, 494.CrossRefGoogle Scholar
Weinberg, S. (1996), The Quantum Theory of Fields, Vols. 1–3, Cambridge University Press.CrossRefGoogle Scholar
White, C. D., and Thorne, R. S. (2007), A global fit to scattering data with NLL BFKL resummations, Phys. Rev. D75, 034 005.Google Scholar
Wilson, K. G. (1974), Confinement of quarks, Phys. Rev. D10, 2445.Google Scholar
Witten, E. (1979), Baryons in the 1/N expansion, Nucl. Phys. B160, 57.CrossRefGoogle Scholar
Woods, R. D., and Saxon, D. S. (1954), Diffuse surface optical model for nucleon-nuclei scattering, Phys. Rev. 95, 577.CrossRefGoogle Scholar
Wusthoff, M., and Martin, A. D. (1999), The QCD description of diffractive processes, J. Phys. G25, R309.CrossRefGoogle Scholar
Yang, C. N., and Mills, R. L. (1954), Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96, 191.CrossRefGoogle Scholar
Yndurain, F. J. (2006), The Theory of Quark and Gluon Interactions, fourth edition Springer.Google Scholar
Zakharov, V. I. (1992), QCD perturbative expansions in large orders, Nucl. Phys. B385, 452.CrossRefGoogle Scholar
Zamolodchikov, A. B., Kopeliovich, B. Z., and Lapidus, L. I. (1981), Dynamics of colour in hadron diffraction by nuclei, JETP Lett. 33, 595Google Scholar
[Pisma Zh. Eksp. Teor. Fiz. 33, 612].
ZEUS collaboration, Breitweg, J., et al. (1999), Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data, Eur. Phys. J., C6, 43.CrossRefGoogle Scholar
ZEUS collaboration, Chekanov, S., et al. (2003), A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering, Phys. Rev. D67, 012 007 [arXiv:hep-ex/0208023].Google Scholar
Zhang, W. M., and Harindranath, A. (1993), Light front QCD. 2: Two component theory, Phys. Rev. D48, 4881.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Yuri V. Kovchegov, Ohio State University, Eugene Levin, Tel-Aviv University
  • Book: Quantum Chromodynamics at High Energy
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022187.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Yuri V. Kovchegov, Ohio State University, Eugene Levin, Tel-Aviv University
  • Book: Quantum Chromodynamics at High Energy
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022187.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Yuri V. Kovchegov, Ohio State University, Eugene Levin, Tel-Aviv University
  • Book: Quantum Chromodynamics at High Energy
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022187.013
Available formats
×