Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:56:50.094Z Has data issue: false hasContentIssue false

5 - Radiation therapy

Published online by Cambridge University Press:  23 December 2009

Hedvig Hricak
Affiliation:
Memorial Sloan-Kettering Cancer Center
Peter Scardino
Affiliation:
Memorial Sloan-Kettering Cancer Center
Get access

Summary

Introduction

Radiation therapy has played a significant role in the management of prostate cancer for over half a century. High-energy megavoltage linear accelerators developed in the 1950s provided deeper penetration of tumoricidal dose, superficial tissue sparing and hence lower morbidity profiles than earlier models. The introduction of the CT scanner and complex computer-based treatment planning software in the 1980s improved three-dimensional target localization and enhanced accuracy. Subsequently, intensity-modulated treatment planning capabilities enabled highly conformal dose escalation for improved outcomes without added toxicity. New image-guidance techniques have further refined treatment delivery by compensating for internal organ variability. Concurrent with vast improvements in external beam radiation therapy, modern brachytherapy methods, facilitated by dynamic imaging, have become sophisticated and popular techniques for primary as well as salvage therapies. In addition, refinement of prognostic factors, particularly prostate-specific antigen (PSA), and contemporary imaging for staging have substantially improved patient selection for individualized therapy.

Today, modern radiotherapeutic approaches rely on accurate staging, precise imaging, and prognostic prediction, as well as technical advances in dose delivery and normal tissue protection.

Imaging for patient selection and radiation treatment planning

An accurate staging assessment prior to definitive therapy is critical in order to maximize cure rates. Prognostic risk factors including American Joint Commission on Cancer (AJCC) stage, Gleason score and pre-treatment PSA assess the risk of disease beyond the prostate, predict the yield of diagnostic studies, and guide radiotherapeutic decision-making.

Type
Chapter
Information
Prostate Cancer , pp. 58 - 92
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,National Comprehensive Cancer Network. Prostate cancer. In: National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology, version 1.2008. Jenkinstown, PA: National Comprehensive Cancer Network, March 2008. Available from: http://www.nccn.org/ (accessed May 2 2008).
Schiedler, J., Hricak, H., Vigneron, D. B., et al., Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three dimensional proton MR spectroscopic imaging. Radiology, 213:2 (1999), 481–8.Google Scholar
Sala, E., Akin, O., Moskowitz, C. S., et al., Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology, 238:3 (2006), 929–37.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Harrison, A., Neoadjuvant androgen ablation prior to radiotherapy for prostate cancer: reducing the potential morbidity of therapy. Urology, 49:3A Suppl (1997), 38–45.CrossRefGoogle Scholar
Akin, O., Sala, E., Moskowitz, C. S., et al., Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging – initial results. Radiology, 239:3 (2006), 784–92.CrossRefGoogle Scholar
Zakian, K. L., Sircar, K., Hricak, H., et al., Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology, 234:3 (2005), 804–14.CrossRefGoogle ScholarPubMed
Mizowaki, T., Cohen, G. N., Fung, A. Y., et al., Towards integrating functional imaging in the treatment of prostate cancer with radiation: the registration of the MR spectroscopy imaging to ultrasound/CT images and its implementation in treatment planning. Int J Radiat Oncol Biol Phys, 54:5 (2003), 1558–64.CrossRefGoogle Scholar
Jager, P. L., Vaalburg, W., Prium, J., et al., Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med, 42 (2001), 432–45.Google Scholar
Rinnab, L., Mottaghy, F. M., Blumstein, N. M., et al., Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int, 100:4 (2007), 786–93.CrossRefGoogle ScholarPubMed
Vees, H., Buchegger, F., Albrecht, S., et al., 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int, 99:6 (2007), 1415–20.CrossRefGoogle ScholarPubMed
Partin, A. W., Kattan, M. W., Subong, E. N., et al., Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA, 277 (1997), 1445–51.CrossRefGoogle ScholarPubMed
Partin, A. W., Mangold, L. A., Lamm, D. M., et al., Contemporary update of prostate cancer staging nomograms (Partin tables) for the new millennium. Urology, 58 (2001), 843–8.CrossRefGoogle ScholarPubMed
Roach, M. 3rd, Chen, A., Song, J., et al., Pretreatment prostate-specific antigen and Gleason score predict the risk of extracapsular extension and the risk of failure following radiotherapy in patients with clinically localized prostate cancer. Semin Urol Oncol, 18:2 (2000), 108–14.Google ScholarPubMed
Diaz, A., Roach, M. 3rd, Marquez, C., et al., Indication for and the significance of seminal vesicle irradiation during 3D conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 30:2 (1994), 323–9.CrossRefGoogle Scholar
Roach, M. 3rd, Marquez, C., You, H. S., et al., Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys, 28:1 (1994), 33–7.CrossRefGoogle ScholarPubMed
Medica, M., Giglio, M., Germinale, F., et al., Roach's mathematical equations in predicting pathologic stage in men with clinically localized prostate cancer. Tumori, 87 (2001), 130.CrossRefGoogle Scholar
Roach, M., DeSilvio, M., Lawton, C., et al., Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol, 21:10 (2003), 1904–11.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Whittington, R., Malkowicz, S. B., Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA, 280 (1998), 969–74.CrossRefGoogle ScholarPubMed
Stephenson, A. J., Kattan, M. W.. Nomograms for prostate cancer. BJU Int, 8:1 (2006), 39–46.CrossRefGoogle Scholar
Kattan, M. W., Eastham, J. A., Eastham, A. M. F., et al., A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst, 90 (1998), 766–71.CrossRefGoogle ScholarPubMed
Kattan, M. W., Potters, L., Blasko, J. C., et al., Pretreatment nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology, 58 (2001), 393–9.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kattan, M. W., Fearn, P., et al., Pretreatment nomogram predicting ten-year biochemical outcome of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. Urology, 70:2 (2007), 283–7.CrossRefGoogle ScholarPubMed
Peller, P. A., Young, D. C., Marmaduke, D. P., et al., Sextant prostate biopsies. A histopathologic correlation with radical prostatectomy specimens. Cancer, 75 (1995), 530–9.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Francisco, I. F. San, Regan, M. M., Olumi, A. F., et al., Percent of cores positive for cancer is a better preoperative predictor of cancer recurrence after radical prostatectomy than prostate specific antigen. J Urol, 171 (2004), 1492–9.CrossRefGoogle Scholar
Spalding, A. C., Daignault, S., Sandler, H. M., et al., Percent positive biopsy cores as a prognostic factor for prostate cancer treated with external beam radiation. Urology, 69:5 (2007), 936–40.CrossRefGoogle ScholarPubMed
Kestin, L. L., Goldstein, N. S., Vicini, F. A., et al., Percentage of positive biopsy cores as a predictor of clinical outcome in prostate cancer treated with radiotherapy. J Urol, 168:5 (2002), 1994–9.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Schultz, D., Silver, B., et al., The clinical utility of the percent of positive prostate biopsies in predicting biochemical outcome following external beam radiation therapy for patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys, 49:3 (2001), 679–84.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Chen, M. H., Roehl, K. A., et al., Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med, 351:2 (2004), 125–35.CrossRefGoogle ScholarPubMed
Patel, D. A., Presti, Jr J. C.., McNeal, J. E., et al., Preoperative PSA velocity is an independent prognostic factor for relapse after radical prostatectomy. J Clin Oncol, 23 (2005), 6157–62.CrossRefGoogle ScholarPubMed
Palma, D., Tyldesley, S., Blood, P., et al., Pretreatment PSA velocity as a predictor of disease outcome following radical radiation therapy. Int J Radiat Oncol Biol Phys 67:5 (2007), 1425–9.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Renshaw, A. A., Sussman, B., et al., Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA, 294 (2005), 440–7.CrossRefGoogle ScholarPubMed
Stephenson, A. J, Kattan, M. W., Eastham, J. A., et al., Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol, 24 (2006), 3973.CrossRefGoogle ScholarPubMed
Stephenson, A. J., Shariat, S. F., Zelefsky, M. J., et al., Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA, 291 (2004), 1325.CrossRefGoogle ScholarPubMed
,American Society for Therapeutic Radiology and Oncology Consensus Panel. Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys, 37 (1997), 1035–41.Google Scholar
Roach, M. 3rd, Hanks, G., Thames, Jr H.., et al., Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys, 65 (2006), 965–74.CrossRefGoogle ScholarPubMed
Buyyounouski, M. K., Hanlon, A. L., Horwitz, E. M., et al., Biochemical failure and the temporal kinetics of prostate-specific antigen after radiation therapy and hormone therapy. Int J Radiat Oncol Biol Phys, 61:5 (2005), 1291–8.CrossRefGoogle Scholar
Wallace, K., Fleshner, N., Jewett, M., et al., Impact of a multi-disciplinary patient education session on accrual to a difficult clinical trial: the Toronto experience with the surgical prostatectomy versus interstitial radiation intervention trial. J Clin Oncol, 24:25 (2006), 4158–62.CrossRefGoogle ScholarPubMed
,PR06 Collaborators. Early closure of a randomized controlled trial of three treatment approaches to early localised prostate cancer: the MRC PR06 trial.BJU Int, 94 (2004), 1400–1.CrossRefGoogle Scholar
Mills, N., Donovan, J., Smith, M., et al., Perceptions of equipoise are crucial to trial participation: a qualitative study of men in the ProtecT study. Control Clin Trials, 24 (2003), 272–82.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kuban, D. A., Levy, L. B., et al., Multi-institutional analysis of long term outcome for stages T1-T2 prostate cancer treatment with permanent seed implantation. Int J Radiat Oncol Biol Phys, 67:2 (2007), 327–33.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Elshaikh, M., Reddy, C. A., et al., Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single institution experience with radical prostatectomy and external beam radiation therapy. J Clin Oncol, 20:16 (2002), 3376–85.CrossRefGoogle Scholar
Kupelian, P. A., Potters, L., Khuntia, D., et al., Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy ≥72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys, 58:1 (2004), 25–33.CrossRefGoogle ScholarPubMed
Fletcher, S. G., Mills, S. M., Smolkin, M. E., et al., Case-matched comparison of contemporary radiation therapy to surgery in patients with locally advanced prostate cancer. Int J Radiat Oncol Biol Phys, 66:4 (2006), 1092–9.CrossRefGoogle ScholarPubMed
Hanks, G. E., Hanlon, A. L., Schultheiss, T. E., et al., Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization and future directions. Int J Radiat Oncol Biol Phys, 41 (1998), 501.CrossRefGoogle ScholarPubMed
Perez, C. A., Lee, H. K., Georgiou, A., et al., Technical and tumor-related factors affecting outcome of definitive irradiation for clinically localized carcinoma of the prostate. Int J Radiat Oncol Biol Phys, 26 (1993), 581.CrossRefGoogle Scholar
Zelefsky, M. J., Chan, H., Hunt, M., et al., Long term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol, 176 (2006), 1415–19.CrossRefGoogle ScholarPubMed
Cahlon, O., Zelefsky, M. J., Shippy, A., et al., Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 2007 Dec 28 (Epub ahead of print).Google ScholarPubMed
Zelefsky, M. J., Yamada, Y., Fuks, Z., et al., Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastasis-free survival outcomes. Int J Radiat Oncol Biol Phys, 2008 Feb 13 (Epub ahead of print).CrossRefGoogle Scholar
Zelefsky, M. J., Fuks, Z., Hunt, M., et al., High dose radiation delivered by intensity-modulated conformal radiotherapy improves outcome of localized prostate cancer. J Urol, 166 (2001), 876–81.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Levin, E. J., Hunt, M., et al., Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 70:4 (2008), 1124–9.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Buchsbaum, J. C., Reddy, C. A., et al., Radiation dose-response in patients with favorable, localized prostate cancer (stage T1-T2, biopsy Gleason ≤6, and pretreatment prostate-specific antigen ≤10). Int J Radiat Oncol Biol Phys, 50:3 (2001), 621–5.CrossRefGoogle Scholar
Shipley, W. U., Werhey, L. J., Munzenrider, J. E., et al., Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys, 32 (1995), 3–12.CrossRefGoogle ScholarPubMed
Pollack, A., Zagars, G. K., Starkschall, G., et al., Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys, 53 (2002), 1097–105.CrossRefGoogle Scholar
Zietman, A. L., DeSilvio, M. L., Slater, J. D., et al., Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA, 294 (2005), 1233–9.CrossRefGoogle ScholarPubMed
Peeters, S. T. H., Heemsbergen, W. D., Koper, P. C. M., et al., Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol, 24 (2006), 1990–6.CrossRefGoogle ScholarPubMed
Dearnaley, D. P., Sydes, M. R., Graham, J. D., et al., Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol, 8:6 (2007), 475–87.CrossRefGoogle ScholarPubMed
Pickett, B., Vigenault, E., Kurthanewicz, J., et al., Static field intensity modulation to treat a dominant intraprostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys, 45 (1999), 857–65.Google Scholar
DeMeerleer, G., Villiers, G., Bral, S., et al., The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol, 75:3 (2005), 325–33.CrossRefGoogle Scholar
Pucar, D., Hricak, H., Shukla-Dave, A, et al., Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys, 69:1 (2007), 62–9.CrossRefGoogle ScholarPubMed
Singh, A. K., Guion, P., Sears-Crouse, N., et al., Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gy with IMRT: early results of a phase I NCI study. Radiat Oncol, 2 (2007), 36.CrossRefGoogle ScholarPubMed
Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., et al., Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53 (2002), 1337–49.CrossRefGoogle ScholarPubMed
Pouliot, J., Bani-Hashemi, A., Chen, J., et al., Low dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys, 61 (2005), 552–60.CrossRefGoogle ScholarPubMed
Gayou, O., Parda, D. S., Johnson, M., et al., Patient dose and image quality from mega-voltage computed tomography imaging. Med Phys 34 (2007), 499–506.CrossRefGoogle ScholarPubMed
Langen, K. M., Zhang, Y., Andrews, R. D., et al., Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. J Radiat Oncol Biol Phys, 62:5 (2005), 1517–24.CrossRefGoogle ScholarPubMed
Fowler, J. F., The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol, 44:3 (2005), 265–76.CrossRefGoogle ScholarPubMed
Williams, S. G., Taylor, J. M., Lium, N.et al., Use of individual fraction size data from 3756 patients to directly determine the α/β ratio of prostate cancer. Int J Radiat Biol Oncol Phys, 68 (2007), 24–33.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Thakkar, V. V., Khuntia, D., et al., Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: long-term outcome. Int J Radiat Oncol Biol Phys, 63:5 (2005), 1463–8.CrossRefGoogle Scholar
Yeoh, E. E., Holloway, R. H., Fraser, R. J., et al., Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Biol Oncol Phys, 66 (2006), 1072–83.CrossRefGoogle ScholarPubMed
Lukka, H., Hayter, C., Julian, J. A., et al., Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol, 23 (2005), 6132–8.CrossRefGoogle ScholarPubMed
,Radiation Therapy Oncology Group. Acute Radiation Morbidity Scoring Criteria. Available at: http://rtog.org/members/toxicity/acute.html#genito (accessed May 2, 2008).
Scarpero, H. M., Fiske, J., Xue, X., et al., American Urological Association Symptom Index for lower urinary tract symptoms in women: correlation with degree of bother and impact on quality of life. Urology, 61 (2003), 1118–22.CrossRefGoogle Scholar
Sandhu, A. S., Zelefsky, M. J., Lee, H. J., et al., Long term urinary toxicity after 3-dimensional conformal radiotherapy for prostate cancer in patients with prior history of transurethral resection. Int J Radiat Oncol Biol Phys, 48:3 (2000), 643–7.CrossRefGoogle ScholarPubMed
Su, A. W., Jani, A. B., Chronic genitourinary and gastrointestinal toxicity of prostate cancer patients undergoing pelvic radiotherapy with intensity-modulated versus 4-field technique. Am J Clin Oncol, 30:3 (2007), 215–19.CrossRefGoogle ScholarPubMed
O'Brien, P. C., Radiation injury of the rectum. Radiother Oncol, 60 (2001), 1–14.CrossRefGoogle ScholarPubMed
Hopewell, J. W., Calvo, W., Jaenke, R., et al., Microvasculature and radiation damage. Recent Results Cancer Res, 130 (1993), 1–16.CrossRefGoogle ScholarPubMed
Wielen, G. J., Putten, W. L., Incrocci, L., Sexual function after three-dimensional conformal radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys, 68 (2007), 479–84.CrossRefGoogle ScholarPubMed
Turner, S. L., Adams, K., Bull, C. A., et al., Sexual dysfunction after radical radiation therapy for prostate cancer: a prospective evaluation. Urology, 54 (1999), 124–9.CrossRefGoogle ScholarPubMed
Mulhall, J. P., Yonover, P., Sethi, A., et al., Radiation exposure to the corporeal bodies during 3-dimensional conformal radiation therapy for prostate cancer. J Urol, 167 (2002), 539–42.CrossRefGoogle ScholarPubMed
Mangar, S. A., Sydes, M. R., Tucker, H. L., et al., Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: using data from a randomized controlled trial of conformal radiation therapy in prostate cancer (MRC RT01, ISRCTN47772397). Radother Oncol, 80 (2006), 355–62.CrossRefGoogle Scholar
Zelefsky, M. J., Eid, J. F., Elucidating the etiology of erectile dysfunction after definitive therapy for prostatic cancer. Int J Radiat Oncol Biol Phys, 40 (1998), 129–33.CrossRefGoogle ScholarPubMed
Wallner, K., Merrick, G., True, L., et al., 125I versus 103Pd for low-risk prostate cancer: preliminary PSA outcomes from a prospective randomized multicenter trial. Int J Radiat Oncol Biol Phys, 57 (2003), 1297–303.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Cohen, G., Zakian, K. L., et al., Intraoperative conformal optimization for transperineal prostate implantation using magnetic resonance spectroscopic imaging. Cancer J, 6:4 (2000), 249–55.Google ScholarPubMed
DiBiase, S. J., Hosseinzadeh, K., Gullapalli, R. P., et al., Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 52:2 (2002), 429–38.CrossRefGoogle ScholarPubMed
Grimm, P., Clinical results of prostate brachytherapy. Radiological Society of North America Annual Meeting, Chicago 1998.
Stock, R. G., Stone, N. N., Tabert, A., et al., A dose response study for I-125 prostate implants. Int J Radiat Oncol Biol Phys, 41:1 (1998), 101–8.CrossRefGoogle ScholarPubMed
Kollmeier, M. A., Stock, R. G., Stone, N., Biochemical outcomes after prostate brachytherapy with 5-year minimal follow-up. Importance of patient selection and implant quality. Int J Radiat Oncol Biol Phys, 57 (2003), 645–53.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kuban, D. A., Levy, L. B., et al., Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 67 (2007), 327–33.CrossRefGoogle ScholarPubMed
Nag, S., Beyer, D., Friedland, J., et al., American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys, 44 (1999), 789–99.CrossRefGoogle ScholarPubMed
Rivard, M. J., Butler, W. M., Devlin, P. M., et al., American Brachytherapy Society (ABS) recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103. Brachytherapy, 6:1 (2007), 34–7.CrossRefGoogle ScholarPubMed
Stock, R. G., Stone, N. N., Cesaretti, J. A., et al., Biologically effective dose values for prostate brachytherapy: effect on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys, 64:2 (2005), 527–33.CrossRefGoogle ScholarPubMed
Syed, A. M., Puthawala, A., Sharma, A., et al., High-dose-rate brachytherapy in the treatment of carcinoma of the prostate. Cancer Control, 8 (2001), 511–21.CrossRefGoogle ScholarPubMed
Vargas, C. E., Martinez, A. A., Boike, T. P., et al., High dose irradiation for prostate cancer via a high-dose-rate brachytherapy boost: results of a phase I to II study. Int J Radiat Oncol Biol Phys, 66:2 (2006), 416–23.CrossRefGoogle Scholar
Galalae, R. M., Martinez, A. A., Mate, T., et al., Long-term outcome by risk factors using conformal high-dose-rate brachytherapy (HDR-BT) boost with or without neoadjuvant androgen suppression for localized prostate cancer. Int J Radiat Oncol Biol Phys, 58:4 (2004), 1048–55.CrossRefGoogle ScholarPubMed
Kovacs, G., Galalae, R., Fractionated perineal high-dose-rate temporary brachytherapy combined with external beam radiation in the treatment of localized prostate cancer: is lymph node sampling necessary?Cancer Radiother, 7 (2003), 100–6.CrossRefGoogle ScholarPubMed
Phan, T. P., Syed, A. M., Puthawala, A., et al., High dose rate brachytherapy as a boost for the treatment of localized prostate cancer. J Urol, 177 (2007), 123–7.CrossRefGoogle ScholarPubMed
Grills, I. S., Martinez, A. A., Hollander, M., et al., High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J Urol, 171:3 (2004), 1098–104.CrossRefGoogle ScholarPubMed
Martin, T., Baltas, D., Kurek, R., et al., 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study. Strahlenther Onkol, 280 (2004), 225–32.CrossRefGoogle Scholar
Martinez, A. A., Pataki, I., Edmundson, G., et al., Phase II prospective study of the use of conformal high-dose-rate brachytherapy as monotherapy for the treatment of favorable stage prostate cancer: a feasibility report. Int J Radiat Oncol Biol Phys, 49 (2001), 61–9.CrossRefGoogle ScholarPubMed
Gelblum, D. Y., Potters, L., Ashley, R., et al., Urinary morbidity following ultrasound-guided transperineal prostate seed implantation. Int J Radiat Oncol Biol Phys, 45 (1999), 59.CrossRefGoogle ScholarPubMed
Terk, M. D., Stock, R. G., Stone, N. N., Identification of patients at increased risk for prolonged urinary retention following radioactive seed implantation of the prostate. J Urol, 160 (1998), 1379–82.CrossRefGoogle ScholarPubMed
Lee, N., Wuu, C., Brody, R., et al., Factors predicting for postimplantation urinary retention after permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys, 48 (2000), 1457–60.CrossRefGoogle ScholarPubMed
Thomas, M. D., Cormack, R., Tempany, C. M., et al., Identifying the predictors of acute urinary retention following magnetic-resonance-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys, 47 (2000), 905–8.CrossRefGoogle ScholarPubMed
Crook, J., McLean, M., Catton, C., et al., Factors influencing risk of acute urinary retention after TRUS-guided permanent prostate seed implantation. Int J Radiat Oncol Biol Phys, 52 (2002), 453–60.CrossRefGoogle ScholarPubMed
Neill, M., Studer, G., Le, L., et al., The nature and extent of urinary morbidity in relation to prostate brachytherapy urethral dosimetry. Brachytherapy, 6:3 (2007), 173–9.CrossRefGoogle ScholarPubMed
Kollmeier, M. A., Stock, R. G., Cesaretti, J., et al., Urinary morbidity and incontinence following transurethral resection of the prostate after brachytherapy. J Urol, 173 (2005), 808–12.CrossRefGoogle ScholarPubMed
Snyder, K. M., Stock, R. G., Hong, S. M., et al., Defining the risk of developing grade 2 proctitis following 125I prostate brachytherapy using a rectal dose–volume histogram analysis. Int J Radiat Oncol Biol Phys, 50 (2001), 335–41.CrossRefGoogle ScholarPubMed
Han, B. H., Wallner, K. E., Dosimetric and radiographic correlates to prostate brachytherapy-related rectal complications. Int J Cancer, 96 (2001), 372–8.CrossRefGoogle ScholarPubMed
Waterman, F. M., Dicker, A. P., Probability of late rectal morbidity in 125I prostate brachytherapy. Int J Radiat Oncol Biol Phys, 55 (2003), 342–53.CrossRefGoogle Scholar
Cesaretti, J. A., Stock, R. G., Atencio, D. P., et al., A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys, 68:5 (2007), 1410–16.CrossRefGoogle ScholarPubMed
Yamada, Y., Bhatia, S., Zaider, M., et al., Favorable clinical outcomes of three-dimensional computer-optimized high-dose-rate prostate brachytherapy in the management of localized prostate cancer. Brachytherapy, 5:3 (2006), 157–64.CrossRefGoogle ScholarPubMed
Tsui, G., Gillan, C., Pond, G., et al., Posttreatment complications of early stage prostate cancer patients: brachytherapy versus three-dimensional conformal radiation therapy. Cancer J, 11:2 (2005), 122–32.CrossRefGoogle ScholarPubMed
Merrick, G. S., Butler, W. M., Wallner, K. E., et al., Erectile function after prostate brachytherapy. Int J Radiat Oncol Biol Phys, 62:2 (2005), 437–47.CrossRefGoogle ScholarPubMed
Stone, N. N., Stock, R. G., Long-term urinary, sexual, and rectal morbidity in patients treated with iodine-125 prostate brachytherapy followed up for a minimum of 5 years. Urology, 69:2 (2007), 338–42.CrossRefGoogle ScholarPubMed
Ohebshalom, M., Parker, M., Guhring, P., et al., The efficacy of sildenafil citrate following radiation therapy for prostate cancer: temporal considerations. J Urol, 174:1 (2005), 258–62.CrossRefGoogle ScholarPubMed
Davis, B. J., Pisansky, T. M., Wilson, T. M., et al., The radial distance of extraprostatic extension of prostate carcinoma: implications for prostate brachytherapy. Cancer, 85 (1999), 2630–7.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Critz, F. A., Levinson, K., 10-year disease-free survival after simultaneous irradiation for prostate cancer with a focus on calculation methodology. J Urol, 172:6 Pt 1 (2004), 2232–8.CrossRefGoogle ScholarPubMed
Ragde, H., Blasko, J. C., Grimm, P. D., et al., Brachytherapy for clinically localized prostate cancer: results at 7- and 8-year followup. Semin Surg Oncol, 13 (1997), 438–43.3.0.CO;2-B>CrossRefGoogle Scholar
Stock, R. G., Cahlon, O., Cesaretti, J. A., et al., Combined modality treatment in the management of high risk prostate cancer. Int J Radiat Oncol Biol Phys, 59 (2004), 1352–9.CrossRefGoogle ScholarPubMed
Sylvester, J. E., Blasko, J. C., Grimm, P. D., et al., Ten-year biochemical relapse-free survival after external beam radiation and brachytherapy for localized prostate cancer: the Seattle experience. Int J Radiat Oncol Biol Phys, 57 (2003), 944–52.CrossRefGoogle ScholarPubMed
Dattoli, M., Wallner, K., True, L., et al., Long term outcomes after treatment with brachytherapy and supplemental conformal radiation for prostate cancer patients having intermediate and high-risk features. Cancer, 110:3 (2007), 551–5.CrossRefGoogle ScholarPubMed
Singh, A. M., Gagnon, G., Colliins, B., et al., Combined external beam radiotherapy and Pd-103 brachytherapy boost improves biochemical failure-free survival in patients with clinically localized prostate cancer: results from a matched pair analysis. The Prostate, 62 (2005), 54–60.CrossRefGoogle ScholarPubMed
Sathya, J. R., Davis, I. R., Julian, J. A., et al., Randomized trial comparing iridium implant plus external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol, 23:6 (2005), 1192–9.CrossRefGoogle ScholarPubMed
Hoskin, P. J., Motohashi, K., Bownes, P., et al., High dose rate brachytherapy in combination with external beam radiation therapy in the radical treatment of prostate cancer: initial results of a randomized phase three trial. Radiother Oncol, 84 (2007), 114–20.CrossRefGoogle ScholarPubMed
Cooperberg, M. R., Grossfeld, G. D., Lubeck, D. P., et al., National practice patterns and time trends in androgen ablation for localized prostate cancer. J Natl Cancer Inst, 95 (2003), 981–9.CrossRefGoogle ScholarPubMed
Garnick, M. B., Fair, W. R., Botswick, D., et al., Overview consensus statement. Fifth International Conference on Neoadjuvant Hormonal Therapy for Prostate Cancer. Mol Urol, 4:3 (2000), 89–92.Google ScholarPubMed
Zietman, A. L., Prince, E. A., Nafoor, B. M., et al., Androgen deprivation and radiation therapy: sequencing studies using the Shionogi in vivo tumor system. Int J Radiat Oncol Biol Phys, 38 (1997), 1067.CrossRefGoogle ScholarPubMed
Bolla, M., Collette, L., Blank, L., et al., Long term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomized trial. Lancet, 360 (2002), 103–8.CrossRefGoogle Scholar
Pilepich, M. V., Winter, K., Lawton, C. A., et al., Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma – long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys, 61:5 (2005), 1285–90.CrossRefGoogle ScholarPubMed
Pilepich, M. V., Winter, K., John, M. J., et al., Phase III Radiation Therapy Oncology Group (RTOG) 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys, 50:5 (2001), 1243–52.CrossRefGoogle ScholarPubMed
Hanks, G. E., Pajak, T. F., Porter, A., et al., Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92-02. J Clin Oncol, 21:21 (2003), 3972–8.CrossRefGoogle ScholarPubMed
Lawton, C. A., DeSilvio, M., Roach, M., et al., An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys, 69:3 (2007), 646–55.CrossRefGoogle ScholarPubMed
Laverdiére, J., Nabid, A., Bedoya, L. D., et al., The efficacy and sequencing of a short course of androgen suppression on freedom from biochemical failure when administered with radiation therapy for T2-T3 prostate cancer. J Urol, 171:3 (2004), 1137–40.CrossRefGoogle Scholar
D'Amico, A. V., Manola, J., Loffredo, M., et al., 6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer. JAMA, 292:7 (2004), 821–7.CrossRefGoogle ScholarPubMed
Gransfors, T., Modig, H., Damber, J., et al., Long-term followup of a randomized study of locally advanced prostate cancer treated with combined orchiectomy and external radiotherapy versus radiotherapy alone. J Urol, 176 (2006), 544–7.CrossRefGoogle Scholar
Klotz, L. H., Goldenberg, S. L., Jewett, M., et al., CUOG randomized trial of neoadjuvant androgen ablation before radical prostatectomy: 36-month post-treatment PSA results. Urology, 53:4 (1999), 757–63.CrossRefGoogle ScholarPubMed
Denham, J. W., Steigler, A., Lamb, D. S., et al., Short term androgen deprivation and radiotherapy for locally advanced prostate cancer: results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol, 6 (2005), 841–50.CrossRefGoogle ScholarPubMed
Kumar, S., Shelley, M., Harrison, C., et al., Neo-adjuvant and adjuvant hormone therapy for localized and locally advanced prostate cancer. Cochrane Database Syst Rev, 4 (2006), CD006019.CrossRefGoogle Scholar
Hull, G. W., Rabbani, F., Abbas, F., et al., Cancer control with radical prostatectomy alone in 1000 consecutive patients. J Urol, 167 (2002), 528–34.CrossRefGoogle Scholar
Pound, C. R., Partin, A. W., Eisenberger, M. A., et al., Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 281:17 (1999), 1591–7.CrossRefGoogle ScholarPubMed
Swanson, G. P., Hussey, M. A., Tangen, C. M., et al., Predominant treatment failure in postprostatectomy patients is local: analysis of patterns of treatment failure in SWOG 8794. J Clin Oncol, 25:16 (2007), 2225–9.CrossRefGoogle ScholarPubMed
Bolla, M., Poppel, H., Collette, L., et al., Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC 22911). Lancet, 366 (2005), 571–8.CrossRefGoogle Scholar
Thompson, Jr I. M.., Tangen, C. M., Paradelo, J, et al., Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA, 296 (2006), 2329–35.CrossRefGoogle ScholarPubMed
Buskirk, S. J., Pisansky, T. M., Schild, S. E., et al., Salvage radiotherapy for isolated prostate specific antigen increase after radical prostatectomy: evaluation of prognostic factors and creation of a prognostic scoring system. J Urol, 176 (2005), 985–90.CrossRefGoogle Scholar
Hayes, S. B., Pollack, A. E., Parameters for treatment decisions for salvage radiation therapy. J Clin Oncol, 23 (2005), 8204–11.CrossRefGoogle ScholarPubMed
Lee, A. K., D'Amico, A. C., Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy. J Clin Oncol, 23 (2005), 8192–7.CrossRefGoogle ScholarPubMed
Cox, J. D., Gallagher, M. J., Hammond, E. H., et al., Consensus statements on radiation therapy of prostate cancer: guidelines for prostate re-biopsy after radiation and for radiation therapy with rising prostate-specific antigen levels after radical prostatectomy. American Society for Therapeutic Radiology and Oncology Consensus Panel. J Clin Oncol, 17:4 (1999), 1155.Google ScholarPubMed
Lee, W. R., Hanks, G. E., Hanlon, A., Increasing prostate-specific antigen profile following definitive radiation therapy for localized prostate cancer: clinical observations. J Clin Oncol, 15 (1997), 230–8.CrossRefGoogle ScholarPubMed
Bianco, Jr F. J.., Scardino, P. T., Stephenson, A. J., et al., Long-term oncologic results of salvage radical prostatectomy for locally recurrent prostate cancer after radiotherapy. Int J Radiat Oncol Biol Phys, 62 (2005), 448–53.CrossRefGoogle ScholarPubMed
Nguyen, P. L., D'Amico, A. V., Lee, A. K., et al., Patient selection, cancer control, and complications after salvage local therapy for postradiation prostate-specific antigen failure: a systematic review of the literature. Cancer, 110 (2007), 1417–28.CrossRefGoogle ScholarPubMed
Nguyen, P. L., Chen, M. H., D'Amico, A. V., et al., Magnetic resonance image-guided salvage brachytherapy after radiation in select men who initially presented with favorable-risk cancer: a prospective phase 2 study. Cancer, 110:7 (2007), 1485–92.CrossRefGoogle ScholarPubMed
Lo, K., Stock, R. G., Salvage, N. N., Prostate brachytherapy following radiotherapy failure. Int J Radiat Oncol Biol Phys, 63:2 Suppl (2005), S290–S291.CrossRefGoogle Scholar
Lee, B., Shinohara, K., Weinberg, V., et al., Feasibility of high-dose-rate brachytherapy salvage for local prostate cancer recurrence after radiotherapy: the University of California-San Francisco experience. Int J Radiat Oncol Biol Phys, 67 (2007), 1106–12.CrossRefGoogle ScholarPubMed
,National Comprehensive Cancer Network. Prostate cancer. In: National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology, version 1.2008. Jenkinstown, PA: National Comprehensive Cancer Network, March 2008. Available from: http://www.nccn.org/ (accessed May 2 2008).
Schiedler, J., Hricak, H., Vigneron, D. B., et al., Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three dimensional proton MR spectroscopic imaging. Radiology, 213:2 (1999), 481–8.Google Scholar
Sala, E., Akin, O., Moskowitz, C. S., et al., Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology, 238:3 (2006), 929–37.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Harrison, A., Neoadjuvant androgen ablation prior to radiotherapy for prostate cancer: reducing the potential morbidity of therapy. Urology, 49:3A Suppl (1997), 38–45.CrossRefGoogle Scholar
Akin, O., Sala, E., Moskowitz, C. S., et al., Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging – initial results. Radiology, 239:3 (2006), 784–92.CrossRefGoogle Scholar
Zakian, K. L., Sircar, K., Hricak, H., et al., Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology, 234:3 (2005), 804–14.CrossRefGoogle ScholarPubMed
Mizowaki, T., Cohen, G. N., Fung, A. Y., et al., Towards integrating functional imaging in the treatment of prostate cancer with radiation: the registration of the MR spectroscopy imaging to ultrasound/CT images and its implementation in treatment planning. Int J Radiat Oncol Biol Phys, 54:5 (2003), 1558–64.CrossRefGoogle Scholar
Jager, P. L., Vaalburg, W., Prium, J., et al., Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med, 42 (2001), 432–45.Google Scholar
Rinnab, L., Mottaghy, F. M., Blumstein, N. M., et al., Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int, 100:4 (2007), 786–93.CrossRefGoogle ScholarPubMed
Vees, H., Buchegger, F., Albrecht, S., et al., 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int, 99:6 (2007), 1415–20.CrossRefGoogle ScholarPubMed
Partin, A. W., Kattan, M. W., Subong, E. N., et al., Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA, 277 (1997), 1445–51.CrossRefGoogle ScholarPubMed
Partin, A. W., Mangold, L. A., Lamm, D. M., et al., Contemporary update of prostate cancer staging nomograms (Partin tables) for the new millennium. Urology, 58 (2001), 843–8.CrossRefGoogle ScholarPubMed
Roach, M. 3rd, Chen, A., Song, J., et al., Pretreatment prostate-specific antigen and Gleason score predict the risk of extracapsular extension and the risk of failure following radiotherapy in patients with clinically localized prostate cancer. Semin Urol Oncol, 18:2 (2000), 108–14.Google ScholarPubMed
Diaz, A., Roach, M. 3rd, Marquez, C., et al., Indication for and the significance of seminal vesicle irradiation during 3D conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 30:2 (1994), 323–9.CrossRefGoogle Scholar
Roach, M. 3rd, Marquez, C., You, H. S., et al., Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys, 28:1 (1994), 33–7.CrossRefGoogle ScholarPubMed
Medica, M., Giglio, M., Germinale, F., et al., Roach's mathematical equations in predicting pathologic stage in men with clinically localized prostate cancer. Tumori, 87 (2001), 130.CrossRefGoogle Scholar
Roach, M., DeSilvio, M., Lawton, C., et al., Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol, 21:10 (2003), 1904–11.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Whittington, R., Malkowicz, S. B., Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA, 280 (1998), 969–74.CrossRefGoogle ScholarPubMed
Stephenson, A. J., Kattan, M. W.. Nomograms for prostate cancer. BJU Int, 8:1 (2006), 39–46.CrossRefGoogle Scholar
Kattan, M. W., Eastham, J. A., Eastham, A. M. F., et al., A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst, 90 (1998), 766–71.CrossRefGoogle ScholarPubMed
Kattan, M. W., Potters, L., Blasko, J. C., et al., Pretreatment nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology, 58 (2001), 393–9.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kattan, M. W., Fearn, P., et al., Pretreatment nomogram predicting ten-year biochemical outcome of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. Urology, 70:2 (2007), 283–7.CrossRefGoogle ScholarPubMed
Peller, P. A., Young, D. C., Marmaduke, D. P., et al., Sextant prostate biopsies. A histopathologic correlation with radical prostatectomy specimens. Cancer, 75 (1995), 530–9.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Francisco, I. F. San, Regan, M. M., Olumi, A. F., et al., Percent of cores positive for cancer is a better preoperative predictor of cancer recurrence after radical prostatectomy than prostate specific antigen. J Urol, 171 (2004), 1492–9.CrossRefGoogle Scholar
Spalding, A. C., Daignault, S., Sandler, H. M., et al., Percent positive biopsy cores as a prognostic factor for prostate cancer treated with external beam radiation. Urology, 69:5 (2007), 936–40.CrossRefGoogle ScholarPubMed
Kestin, L. L., Goldstein, N. S., Vicini, F. A., et al., Percentage of positive biopsy cores as a predictor of clinical outcome in prostate cancer treated with radiotherapy. J Urol, 168:5 (2002), 1994–9.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Schultz, D., Silver, B., et al., The clinical utility of the percent of positive prostate biopsies in predicting biochemical outcome following external beam radiation therapy for patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys, 49:3 (2001), 679–84.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Chen, M. H., Roehl, K. A., et al., Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med, 351:2 (2004), 125–35.CrossRefGoogle ScholarPubMed
Patel, D. A., Presti, Jr J. C.., McNeal, J. E., et al., Preoperative PSA velocity is an independent prognostic factor for relapse after radical prostatectomy. J Clin Oncol, 23 (2005), 6157–62.CrossRefGoogle ScholarPubMed
Palma, D., Tyldesley, S., Blood, P., et al., Pretreatment PSA velocity as a predictor of disease outcome following radical radiation therapy. Int J Radiat Oncol Biol Phys 67:5 (2007), 1425–9.CrossRefGoogle ScholarPubMed
D'Amico, A. V., Renshaw, A. A., Sussman, B., et al., Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA, 294 (2005), 440–7.CrossRefGoogle ScholarPubMed
Stephenson, A. J, Kattan, M. W., Eastham, J. A., et al., Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol, 24 (2006), 3973.CrossRefGoogle ScholarPubMed
Stephenson, A. J., Shariat, S. F., Zelefsky, M. J., et al., Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA, 291 (2004), 1325.CrossRefGoogle ScholarPubMed
,American Society for Therapeutic Radiology and Oncology Consensus Panel. Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys, 37 (1997), 1035–41.Google Scholar
Roach, M. 3rd, Hanks, G., Thames, Jr H.., et al., Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys, 65 (2006), 965–74.CrossRefGoogle ScholarPubMed
Buyyounouski, M. K., Hanlon, A. L., Horwitz, E. M., et al., Biochemical failure and the temporal kinetics of prostate-specific antigen after radiation therapy and hormone therapy. Int J Radiat Oncol Biol Phys, 61:5 (2005), 1291–8.CrossRefGoogle Scholar
Wallace, K., Fleshner, N., Jewett, M., et al., Impact of a multi-disciplinary patient education session on accrual to a difficult clinical trial: the Toronto experience with the surgical prostatectomy versus interstitial radiation intervention trial. J Clin Oncol, 24:25 (2006), 4158–62.CrossRefGoogle ScholarPubMed
,PR06 Collaborators. Early closure of a randomized controlled trial of three treatment approaches to early localised prostate cancer: the MRC PR06 trial.BJU Int, 94 (2004), 1400–1.CrossRefGoogle Scholar
Mills, N., Donovan, J., Smith, M., et al., Perceptions of equipoise are crucial to trial participation: a qualitative study of men in the ProtecT study. Control Clin Trials, 24 (2003), 272–82.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kuban, D. A., Levy, L. B., et al., Multi-institutional analysis of long term outcome for stages T1-T2 prostate cancer treatment with permanent seed implantation. Int J Radiat Oncol Biol Phys, 67:2 (2007), 327–33.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Elshaikh, M., Reddy, C. A., et al., Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single institution experience with radical prostatectomy and external beam radiation therapy. J Clin Oncol, 20:16 (2002), 3376–85.CrossRefGoogle Scholar
Kupelian, P. A., Potters, L., Khuntia, D., et al., Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy ≥72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys, 58:1 (2004), 25–33.CrossRefGoogle ScholarPubMed
Fletcher, S. G., Mills, S. M., Smolkin, M. E., et al., Case-matched comparison of contemporary radiation therapy to surgery in patients with locally advanced prostate cancer. Int J Radiat Oncol Biol Phys, 66:4 (2006), 1092–9.CrossRefGoogle ScholarPubMed
Hanks, G. E., Hanlon, A. L., Schultheiss, T. E., et al., Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization and future directions. Int J Radiat Oncol Biol Phys, 41 (1998), 501.CrossRefGoogle ScholarPubMed
Perez, C. A., Lee, H. K., Georgiou, A., et al., Technical and tumor-related factors affecting outcome of definitive irradiation for clinically localized carcinoma of the prostate. Int J Radiat Oncol Biol Phys, 26 (1993), 581.CrossRefGoogle Scholar
Zelefsky, M. J., Chan, H., Hunt, M., et al., Long term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol, 176 (2006), 1415–19.CrossRefGoogle ScholarPubMed
Cahlon, O., Zelefsky, M. J., Shippy, A., et al., Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 2007 Dec 28 (Epub ahead of print).Google ScholarPubMed
Zelefsky, M. J., Yamada, Y., Fuks, Z., et al., Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastasis-free survival outcomes. Int J Radiat Oncol Biol Phys, 2008 Feb 13 (Epub ahead of print).CrossRefGoogle Scholar
Zelefsky, M. J., Fuks, Z., Hunt, M., et al., High dose radiation delivered by intensity-modulated conformal radiotherapy improves outcome of localized prostate cancer. J Urol, 166 (2001), 876–81.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Levin, E. J., Hunt, M., et al., Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 70:4 (2008), 1124–9.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Buchsbaum, J. C., Reddy, C. A., et al., Radiation dose-response in patients with favorable, localized prostate cancer (stage T1-T2, biopsy Gleason ≤6, and pretreatment prostate-specific antigen ≤10). Int J Radiat Oncol Biol Phys, 50:3 (2001), 621–5.CrossRefGoogle Scholar
Shipley, W. U., Werhey, L. J., Munzenrider, J. E., et al., Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys, 32 (1995), 3–12.CrossRefGoogle ScholarPubMed
Pollack, A., Zagars, G. K., Starkschall, G., et al., Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys, 53 (2002), 1097–105.CrossRefGoogle Scholar
Zietman, A. L., DeSilvio, M. L., Slater, J. D., et al., Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA, 294 (2005), 1233–9.CrossRefGoogle ScholarPubMed
Peeters, S. T. H., Heemsbergen, W. D., Koper, P. C. M., et al., Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol, 24 (2006), 1990–6.CrossRefGoogle ScholarPubMed
Dearnaley, D. P., Sydes, M. R., Graham, J. D., et al., Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol, 8:6 (2007), 475–87.CrossRefGoogle ScholarPubMed
Pickett, B., Vigenault, E., Kurthanewicz, J., et al., Static field intensity modulation to treat a dominant intraprostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys, 45 (1999), 857–65.Google Scholar
DeMeerleer, G., Villiers, G., Bral, S., et al., The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol, 75:3 (2005), 325–33.CrossRefGoogle Scholar
Pucar, D., Hricak, H., Shukla-Dave, A, et al., Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys, 69:1 (2007), 62–9.CrossRefGoogle ScholarPubMed
Singh, A. K., Guion, P., Sears-Crouse, N., et al., Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gy with IMRT: early results of a phase I NCI study. Radiat Oncol, 2 (2007), 36.CrossRefGoogle ScholarPubMed
Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., et al., Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53 (2002), 1337–49.CrossRefGoogle ScholarPubMed
Pouliot, J., Bani-Hashemi, A., Chen, J., et al., Low dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys, 61 (2005), 552–60.CrossRefGoogle ScholarPubMed
Gayou, O., Parda, D. S., Johnson, M., et al., Patient dose and image quality from mega-voltage computed tomography imaging. Med Phys 34 (2007), 499–506.CrossRefGoogle ScholarPubMed
Langen, K. M., Zhang, Y., Andrews, R. D., et al., Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. J Radiat Oncol Biol Phys, 62:5 (2005), 1517–24.CrossRefGoogle ScholarPubMed
Fowler, J. F., The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol, 44:3 (2005), 265–76.CrossRefGoogle ScholarPubMed
Williams, S. G., Taylor, J. M., Lium, N.et al., Use of individual fraction size data from 3756 patients to directly determine the α/β ratio of prostate cancer. Int J Radiat Biol Oncol Phys, 68 (2007), 24–33.CrossRefGoogle ScholarPubMed
Kupelian, P. A., Thakkar, V. V., Khuntia, D., et al., Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: long-term outcome. Int J Radiat Oncol Biol Phys, 63:5 (2005), 1463–8.CrossRefGoogle Scholar
Yeoh, E. E., Holloway, R. H., Fraser, R. J., et al., Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Biol Oncol Phys, 66 (2006), 1072–83.CrossRefGoogle ScholarPubMed
Lukka, H., Hayter, C., Julian, J. A., et al., Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol, 23 (2005), 6132–8.CrossRefGoogle ScholarPubMed
,Radiation Therapy Oncology Group. Acute Radiation Morbidity Scoring Criteria. Available at: http://rtog.org/members/toxicity/acute.html#genito (accessed May 2, 2008).
Scarpero, H. M., Fiske, J., Xue, X., et al., American Urological Association Symptom Index for lower urinary tract symptoms in women: correlation with degree of bother and impact on quality of life. Urology, 61 (2003), 1118–22.CrossRefGoogle Scholar
Sandhu, A. S., Zelefsky, M. J., Lee, H. J., et al., Long term urinary toxicity after 3-dimensional conformal radiotherapy for prostate cancer in patients with prior history of transurethral resection. Int J Radiat Oncol Biol Phys, 48:3 (2000), 643–7.CrossRefGoogle ScholarPubMed
Su, A. W., Jani, A. B., Chronic genitourinary and gastrointestinal toxicity of prostate cancer patients undergoing pelvic radiotherapy with intensity-modulated versus 4-field technique. Am J Clin Oncol, 30:3 (2007), 215–19.CrossRefGoogle ScholarPubMed
O'Brien, P. C., Radiation injury of the rectum. Radiother Oncol, 60 (2001), 1–14.CrossRefGoogle ScholarPubMed
Hopewell, J. W., Calvo, W., Jaenke, R., et al., Microvasculature and radiation damage. Recent Results Cancer Res, 130 (1993), 1–16.CrossRefGoogle ScholarPubMed
Wielen, G. J., Putten, W. L., Incrocci, L., Sexual function after three-dimensional conformal radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys, 68 (2007), 479–84.CrossRefGoogle ScholarPubMed
Turner, S. L., Adams, K., Bull, C. A., et al., Sexual dysfunction after radical radiation therapy for prostate cancer: a prospective evaluation. Urology, 54 (1999), 124–9.CrossRefGoogle ScholarPubMed
Mulhall, J. P., Yonover, P., Sethi, A., et al., Radiation exposure to the corporeal bodies during 3-dimensional conformal radiation therapy for prostate cancer. J Urol, 167 (2002), 539–42.CrossRefGoogle ScholarPubMed
Mangar, S. A., Sydes, M. R., Tucker, H. L., et al., Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: using data from a randomized controlled trial of conformal radiation therapy in prostate cancer (MRC RT01, ISRCTN47772397). Radother Oncol, 80 (2006), 355–62.CrossRefGoogle Scholar
Zelefsky, M. J., Eid, J. F., Elucidating the etiology of erectile dysfunction after definitive therapy for prostatic cancer. Int J Radiat Oncol Biol Phys, 40 (1998), 129–33.CrossRefGoogle ScholarPubMed
Wallner, K., Merrick, G., True, L., et al., 125I versus 103Pd for low-risk prostate cancer: preliminary PSA outcomes from a prospective randomized multicenter trial. Int J Radiat Oncol Biol Phys, 57 (2003), 1297–303.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Cohen, G., Zakian, K. L., et al., Intraoperative conformal optimization for transperineal prostate implantation using magnetic resonance spectroscopic imaging. Cancer J, 6:4 (2000), 249–55.Google ScholarPubMed
DiBiase, S. J., Hosseinzadeh, K., Gullapalli, R. P., et al., Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 52:2 (2002), 429–38.CrossRefGoogle ScholarPubMed
Grimm, P., Clinical results of prostate brachytherapy. Radiological Society of North America Annual Meeting, Chicago 1998.
Stock, R. G., Stone, N. N., Tabert, A., et al., A dose response study for I-125 prostate implants. Int J Radiat Oncol Biol Phys, 41:1 (1998), 101–8.CrossRefGoogle ScholarPubMed
Kollmeier, M. A., Stock, R. G., Stone, N., Biochemical outcomes after prostate brachytherapy with 5-year minimal follow-up. Importance of patient selection and implant quality. Int J Radiat Oncol Biol Phys, 57 (2003), 645–53.CrossRefGoogle ScholarPubMed
Zelefsky, M. J., Kuban, D. A., Levy, L. B., et al., Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 67 (2007), 327–33.CrossRefGoogle ScholarPubMed
Nag, S., Beyer, D., Friedland, J., et al., American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys, 44 (1999), 789–99.CrossRefGoogle ScholarPubMed
Rivard, M. J., Butler, W. M., Devlin, P. M., et al., American Brachytherapy Society (ABS) recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103. Brachytherapy, 6:1 (2007), 34–7.CrossRefGoogle ScholarPubMed
Stock, R. G., Stone, N. N., Cesaretti, J. A., et al., Biologically effective dose values for prostate brachytherapy: effect on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys, 64:2 (2005), 527–33.CrossRefGoogle ScholarPubMed
Syed, A. M., Puthawala, A., Sharma, A., et al., High-dose-rate brachytherapy in the treatment of carcinoma of the prostate. Cancer Control, 8 (2001), 511–21.CrossRefGoogle ScholarPubMed
Vargas, C. E., Martinez, A. A., Boike, T. P., et al., High dose irradiation for prostate cancer via a high-dose-rate brachytherapy boost: results of a phase I to II study. Int J Radiat Oncol Biol Phys, 66:2 (2006), 416–23.CrossRefGoogle Scholar
Galalae, R. M., Martinez, A. A., Mate, T., et al., Long-term outcome by risk factors using conformal high-dose-rate brachytherapy (HDR-BT) boost with or without neoadjuvant androgen suppression for localized prostate cancer. Int J Radiat Oncol Biol Phys, 58:4 (2004), 1048–55.CrossRefGoogle ScholarPubMed
Kovacs, G., Galalae, R., Fractionated perineal high-dose-rate temporary brachytherapy combined with external beam radiation in the treatment of localized prostate cancer: is lymph node sampling necessary?Cancer Radiother, 7 (2003), 100–6.CrossRefGoogle ScholarPubMed
Phan, T. P., Syed, A. M., Puthawala, A., et al., High dose rate brachytherapy as a boost for the treatment of localized prostate cancer. J Urol, 177 (2007), 123–7.CrossRefGoogle ScholarPubMed
Grills, I. S., Martinez, A. A., Hollander, M., et al., High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J Urol, 171:3 (2004), 1098–104.CrossRefGoogle ScholarPubMed
Martin, T., Baltas, D., Kurek, R., et al., 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study. Strahlenther Onkol, 280 (2004), 225–32.CrossRefGoogle Scholar
Martinez, A. A., Pataki, I., Edmundson, G., et al., Phase II prospective study of the use of conformal high-dose-rate brachytherapy as monotherapy for the treatment of favorable stage prostate cancer: a feasibility report. Int J Radiat Oncol Biol Phys, 49 (2001), 61–9.CrossRefGoogle ScholarPubMed
Gelblum, D. Y., Potters, L., Ashley, R., et al., Urinary morbidity following ultrasound-guided transperineal prostate seed implantation. Int J Radiat Oncol Biol Phys, 45 (1999), 59.CrossRefGoogle ScholarPubMed
Terk, M. D., Stock, R. G., Stone, N. N., Identification of patients at increased risk for prolonged urinary retention following radioactive seed implantation of the prostate. J Urol, 160 (1998), 1379–82.CrossRefGoogle ScholarPubMed
Lee, N., Wuu, C., Brody, R., et al., Factors predicting for postimplantation urinary retention after permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys, 48 (2000), 1457–60.CrossRefGoogle ScholarPubMed
Thomas, M. D., Cormack, R., Tempany, C. M., et al., Identifying the predictors of acute urinary retention following magnetic-resonance-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys, 47 (2000), 905–8.CrossRefGoogle ScholarPubMed
Crook, J., McLean, M., Catton, C., et al., Factors influencing risk of acute urinary retention after TRUS-guided permanent prostate seed implantation. Int J Radiat Oncol Biol Phys, 52 (2002), 453–60.CrossRefGoogle ScholarPubMed
Neill, M., Studer, G., Le, L., et al., The nature and extent of urinary morbidity in relation to prostate brachytherapy urethral dosimetry. Brachytherapy, 6:3 (2007), 173–9.CrossRefGoogle ScholarPubMed
Kollmeier, M. A., Stock, R. G., Cesaretti, J., et al., Urinary morbidity and incontinence following transurethral resection of the prostate after brachytherapy. J Urol, 173 (2005), 808–12.CrossRefGoogle ScholarPubMed
Snyder, K. M., Stock, R. G., Hong, S. M., et al., Defining the risk of developing grade 2 proctitis following 125I prostate brachytherapy using a rectal dose–volume histogram analysis. Int J Radiat Oncol Biol Phys, 50 (2001), 335–41.CrossRefGoogle ScholarPubMed
Han, B. H., Wallner, K. E., Dosimetric and radiographic correlates to prostate brachytherapy-related rectal complications. Int J Cancer, 96 (2001), 372–8.CrossRefGoogle ScholarPubMed
Waterman, F. M., Dicker, A. P., Probability of late rectal morbidity in 125I prostate brachytherapy. Int J Radiat Oncol Biol Phys, 55 (2003), 342–53.CrossRefGoogle Scholar
Cesaretti, J. A., Stock, R. G., Atencio, D. P., et al., A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys, 68:5 (2007), 1410–16.CrossRefGoogle ScholarPubMed
Yamada, Y., Bhatia, S., Zaider, M., et al., Favorable clinical outcomes of three-dimensional computer-optimized high-dose-rate prostate brachytherapy in the management of localized prostate cancer. Brachytherapy, 5:3 (2006), 157–64.CrossRefGoogle ScholarPubMed
Tsui, G., Gillan, C., Pond, G., et al., Posttreatment complications of early stage prostate cancer patients: brachytherapy versus three-dimensional conformal radiation therapy. Cancer J, 11:2 (2005), 122–32.CrossRefGoogle ScholarPubMed
Merrick, G. S., Butler, W. M., Wallner, K. E., et al., Erectile function after prostate brachytherapy. Int J Radiat Oncol Biol Phys, 62:2 (2005), 437–47.CrossRefGoogle ScholarPubMed
Stone, N. N., Stock, R. G., Long-term urinary, sexual, and rectal morbidity in patients treated with iodine-125 prostate brachytherapy followed up for a minimum of 5 years. Urology, 69:2 (2007), 338–42.CrossRefGoogle ScholarPubMed
Ohebshalom, M., Parker, M., Guhring, P., et al., The efficacy of sildenafil citrate following radiation therapy for prostate cancer: temporal considerations. J Urol, 174:1 (2005), 258–62.CrossRefGoogle ScholarPubMed
Davis, B. J., Pisansky, T. M., Wilson, T. M., et al., The radial distance of extraprostatic extension of prostate carcinoma: implications for prostate brachytherapy. Cancer, 85 (1999), 2630–7.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Critz, F. A., Levinson, K., 10-year disease-free survival after simultaneous irradiation for prostate cancer with a focus on calculation methodology. J Urol, 172:6 Pt 1 (2004), 2232–8.CrossRefGoogle ScholarPubMed
Ragde, H., Blasko, J. C., Grimm, P. D., et al., Brachytherapy for clinically localized prostate cancer: results at 7- and 8-year followup. Semin Surg Oncol, 13 (1997), 438–43.3.0.CO;2-B>CrossRefGoogle Scholar
Stock, R. G., Cahlon, O., Cesaretti, J. A., et al., Combined modality treatment in the management of high risk prostate cancer. Int J Radiat Oncol Biol Phys, 59 (2004), 1352–9.CrossRefGoogle ScholarPubMed
Sylvester, J. E., Blasko, J. C., Grimm, P. D., et al., Ten-year biochemical relapse-free survival after external beam radiation and brachytherapy for localized prostate cancer: the Seattle experience. Int J Radiat Oncol Biol Phys, 57 (2003), 944–52.CrossRefGoogle ScholarPubMed
Dattoli, M., Wallner, K., True, L., et al., Long term outcomes after treatment with brachytherapy and supplemental conformal radiation for prostate cancer patients having intermediate and high-risk features. Cancer, 110:3 (2007), 551–5.CrossRefGoogle ScholarPubMed
Singh, A. M., Gagnon, G., Colliins, B., et al., Combined external beam radiotherapy and Pd-103 brachytherapy boost improves biochemical failure-free survival in patients with clinically localized prostate cancer: results from a matched pair analysis. The Prostate, 62 (2005), 54–60.CrossRefGoogle ScholarPubMed
Sathya, J. R., Davis, I. R., Julian, J. A., et al., Randomized trial comparing iridium implant plus external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol, 23:6 (2005), 1192–9.CrossRefGoogle ScholarPubMed
Hoskin, P. J., Motohashi, K., Bownes, P., et al., High dose rate brachytherapy in combination with external beam radiation therapy in the radical treatment of prostate cancer: initial results of a randomized phase three trial. Radiother Oncol, 84 (2007), 114–20.CrossRefGoogle ScholarPubMed
Cooperberg, M. R., Grossfeld, G. D., Lubeck, D. P., et al., National practice patterns and time trends in androgen ablation for localized prostate cancer. J Natl Cancer Inst, 95 (2003), 981–9.CrossRefGoogle ScholarPubMed
Garnick, M. B., Fair, W. R., Botswick, D., et al., Overview consensus statement. Fifth International Conference on Neoadjuvant Hormonal Therapy for Prostate Cancer. Mol Urol, 4:3 (2000), 89–92.Google ScholarPubMed
Zietman, A. L., Prince, E. A., Nafoor, B. M., et al., Androgen deprivation and radiation therapy: sequencing studies using the Shionogi in vivo tumor system. Int J Radiat Oncol Biol Phys, 38 (1997), 1067.CrossRefGoogle ScholarPubMed
Bolla, M., Collette, L., Blank, L., et al., Long term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomized trial. Lancet, 360 (2002), 103–8.CrossRefGoogle Scholar
Pilepich, M. V., Winter, K., Lawton, C. A., et al., Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma – long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys, 61:5 (2005), 1285–90.CrossRefGoogle ScholarPubMed
Pilepich, M. V., Winter, K., John, M. J., et al., Phase III Radiation Therapy Oncology Group (RTOG) 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys, 50:5 (2001), 1243–52.CrossRefGoogle ScholarPubMed
Hanks, G. E., Pajak, T. F., Porter, A., et al., Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92-02. J Clin Oncol, 21:21 (2003), 3972–8.CrossRefGoogle ScholarPubMed
Lawton, C. A., DeSilvio, M., Roach, M., et al., An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys, 69:3 (2007), 646–55.CrossRefGoogle ScholarPubMed
Laverdiére, J., Nabid, A., Bedoya, L. D., et al., The efficacy and sequencing of a short course of androgen suppression on freedom from biochemical failure when administered with radiation therapy for T2-T3 prostate cancer. J Urol, 171:3 (2004), 1137–40.CrossRefGoogle Scholar
D'Amico, A. V., Manola, J., Loffredo, M., et al., 6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer. JAMA, 292:7 (2004), 821–7.CrossRefGoogle ScholarPubMed
Gransfors, T., Modig, H., Damber, J., et al., Long-term followup of a randomized study of locally advanced prostate cancer treated with combined orchiectomy and external radiotherapy versus radiotherapy alone. J Urol, 176 (2006), 544–7.CrossRefGoogle Scholar
Klotz, L. H., Goldenberg, S. L., Jewett, M., et al., CUOG randomized trial of neoadjuvant androgen ablation before radical prostatectomy: 36-month post-treatment PSA results. Urology, 53:4 (1999), 757–63.CrossRefGoogle ScholarPubMed
Denham, J. W., Steigler, A., Lamb, D. S., et al., Short term androgen deprivation and radiotherapy for locally advanced prostate cancer: results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol, 6 (2005), 841–50.CrossRefGoogle ScholarPubMed
Kumar, S., Shelley, M., Harrison, C., et al., Neo-adjuvant and adjuvant hormone therapy for localized and locally advanced prostate cancer. Cochrane Database Syst Rev, 4 (2006), CD006019.CrossRefGoogle Scholar
Hull, G. W., Rabbani, F., Abbas, F., et al., Cancer control with radical prostatectomy alone in 1000 consecutive patients. J Urol, 167 (2002), 528–34.CrossRefGoogle Scholar
Pound, C. R., Partin, A. W., Eisenberger, M. A., et al., Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 281:17 (1999), 1591–7.CrossRefGoogle ScholarPubMed
Swanson, G. P., Hussey, M. A., Tangen, C. M., et al., Predominant treatment failure in postprostatectomy patients is local: analysis of patterns of treatment failure in SWOG 8794. J Clin Oncol, 25:16 (2007), 2225–9.CrossRefGoogle ScholarPubMed
Bolla, M., Poppel, H., Collette, L., et al., Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC 22911). Lancet, 366 (2005), 571–8.CrossRefGoogle Scholar
Thompson, Jr I. M.., Tangen, C. M., Paradelo, J, et al., Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA, 296 (2006), 2329–35.CrossRefGoogle ScholarPubMed
Buskirk, S. J., Pisansky, T. M., Schild, S. E., et al., Salvage radiotherapy for isolated prostate specific antigen increase after radical prostatectomy: evaluation of prognostic factors and creation of a prognostic scoring system. J Urol, 176 (2005), 985–90.CrossRefGoogle Scholar
Hayes, S. B., Pollack, A. E., Parameters for treatment decisions for salvage radiation therapy. J Clin Oncol, 23 (2005), 8204–11.CrossRefGoogle ScholarPubMed
Lee, A. K., D'Amico, A. C., Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy. J Clin Oncol, 23 (2005), 8192–7.CrossRefGoogle ScholarPubMed
Cox, J. D., Gallagher, M. J., Hammond, E. H., et al., Consensus statements on radiation therapy of prostate cancer: guidelines for prostate re-biopsy after radiation and for radiation therapy with rising prostate-specific antigen levels after radical prostatectomy. American Society for Therapeutic Radiology and Oncology Consensus Panel. J Clin Oncol, 17:4 (1999), 1155.Google ScholarPubMed
Lee, W. R., Hanks, G. E., Hanlon, A., Increasing prostate-specific antigen profile following definitive radiation therapy for localized prostate cancer: clinical observations. J Clin Oncol, 15 (1997), 230–8.CrossRefGoogle ScholarPubMed
Bianco, Jr F. J.., Scardino, P. T., Stephenson, A. J., et al., Long-term oncologic results of salvage radical prostatectomy for locally recurrent prostate cancer after radiotherapy. Int J Radiat Oncol Biol Phys, 62 (2005), 448–53.CrossRefGoogle ScholarPubMed
Nguyen, P. L., D'Amico, A. V., Lee, A. K., et al., Patient selection, cancer control, and complications after salvage local therapy for postradiation prostate-specific antigen failure: a systematic review of the literature. Cancer, 110 (2007), 1417–28.CrossRefGoogle ScholarPubMed
Nguyen, P. L., Chen, M. H., D'Amico, A. V., et al., Magnetic resonance image-guided salvage brachytherapy after radiation in select men who initially presented with favorable-risk cancer: a prospective phase 2 study. Cancer, 110:7 (2007), 1485–92.CrossRefGoogle ScholarPubMed
Lo, K., Stock, R. G., Salvage, N. N., Prostate brachytherapy following radiotherapy failure. Int J Radiat Oncol Biol Phys, 63:2 Suppl (2005), S290–S291.CrossRefGoogle Scholar
Lee, B., Shinohara, K., Weinberg, V., et al., Feasibility of high-dose-rate brachytherapy salvage for local prostate cancer recurrence after radiotherapy: the University of California-San Francisco experience. Int J Radiat Oncol Biol Phys, 67 (2007), 1106–12.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×