Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T23:26:13.907Z Has data issue: false hasContentIssue false

Chapter 12 - Metabolic regulation

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Barnard, A., Wolfe, A. & Busby, S. (2004). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology 7, 102108.CrossRefGoogle ScholarPubMed
Battesti, A., Majdalani, N. & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annual Review of Microbiology 65, 189213.CrossRefGoogle ScholarPubMed
Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Current Opinion in Microbiology 24, 8895.CrossRefGoogle ScholarPubMed
Grabowicz, M. and Silhavy, T. J., (2017). Envelope stress responses: an interconnected safety net. Trends in Biochemical Sciences 42, 232242.CrossRefGoogle ScholarPubMed
Gruber, T. M. & Gross, C. A. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology 57, 441466.CrossRefGoogle ScholarPubMed
Helmann, J. D. (2016). Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Current Opinion in Microbiology 30, 122132.CrossRefGoogle ScholarPubMed
Herrou, J., Foreman, R., Fiebig, A. & Crosson, S. (2010). A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator. Molecular Microbiology 78, 290304.CrossRefGoogle ScholarPubMed
Kazmierczak, M. J., Wiedmann, M. & Boor, K. J. (2005). Alternative sigma factors and their roles in bacterial virulence. Microbiology and Molecular Biology Reviews 69, 527543.CrossRefGoogle ScholarPubMed
Österberg, S., del Pesos-Santos, T. & Shingler, V. (2011). Regulation of alternative sigma factor use. Annual Review of Microbiology 65, 3755.CrossRefGoogle ScholarPubMed
Yang, Y., Darbari, V. C., Zhang, N., Lu, D., Glyde, R., Wang, Y.-P., Winkelman, J. T., Gourse, R. L., Murakami, K. S., Buck, M., & Zhang, X. (2015). Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Science 349, 882885.CrossRefGoogle ScholarPubMed

Secondary Sources

Cai, J., Tong, H., Qi, F. & Dong, X. (2012). CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans. Journal of Bacteriology 194, 38243832.CrossRefGoogle ScholarPubMed
Chavarría, M., Fuhrer, T., Sauer, U., Pflüger-Grau, K. & de Lorenzo, V. (2013). Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate: phosphotransferase system of Pseudomonas putida. Environmental Microbiology 15, 121132.CrossRefGoogle ScholarPubMed
Fonseca, P., Moreno, R. & Rojo, F. (2013). Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Environmental Microbiology 15, 2435.CrossRefGoogle ScholarPubMed
Galinier, A. & Deutscher, J. (2017). Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Journal of Molecular Biology 429, 773789.CrossRefGoogle ScholarPubMed
Hartmann, T., Zhang, B., Baronian, G., Schulthess, B., Homerova, D., Grubmueller, S., Kutzner, E., Gaupp, R., Bertram, R., Powers, R., Eisenreich, W., Kormanec, J., Herrmann, M., Molle, V., Somerville, G. A. & Bischoff, M. (2013). Catabolite Control Protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. Journal of Biological Chemistry 288, 3611636128.CrossRefGoogle ScholarPubMed
Joshua, C. J., Dahl, R. Benke, P. I. & Keasling, J. D. (2011). Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. Journal of Bacteriology 193, 12931301.CrossRefGoogle ScholarPubMed
Babitzke, P. (2004). Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Current Opinion in Microbiology 7, 132139.CrossRefGoogle ScholarPubMed
Gollnick, P., Babitzke, P., Antson, A. & Yanofsky, C. (2005). Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. Annual Review of Genetics 39, 4768.CrossRefGoogle ScholarPubMed
Wallecha, A., Oreh, H., van der Woude, M. W. & deHaseth, P. L. (2014). Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli. Journal of Bacteriology 196, 27282735.CrossRefGoogle Scholar
Bastet, L., Dubé, A., Massé, E. & Lafontaine, D. A. (2011). New insights into riboswitch regulation mechanisms. Molecular Microbiology 80, 11481154.CrossRefGoogle ScholarPubMed
Dambach, M. D. & Winkler, W. C. (2009). Expanding roles for metabolite-sensing regulatory RNAs. Current Opinion in Microbiology 12, 161169.CrossRefGoogle ScholarPubMed
DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J. R., Cruz, M. R., van Hoof, A., Winkler, W. C. & Garsin, D. A. (2014). A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345, 937940.CrossRefGoogle ScholarPubMed
Fürtig, B., Nozinovic, S., Reining, A. & Schwalbe, H. (2015). Multiple conformational states of riboswitches fine-tune gene regulation. Current Opinion in Structural Biology 30, 112124.CrossRefGoogle ScholarPubMed
Garst, A. D., Porter, E. B. & Batey, R. T. (2012). Insights into the regulatory landscape of the lysine riboswitch. Journal of Molecular Biology 423, 1733.CrossRefGoogle ScholarPubMed
Johnson, J. E. Jr, Reyes, F. E., Polaski, J. T. & Batey, R. T. (2012). B12 cofactors directly stabilize an mRNA regulatory switch. Nature 49, 133137.CrossRefGoogle Scholar
Kulshina, N., Baird, N. J. & Ferre-D’Amare, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural and Molecular Biology 16, 12121217.CrossRefGoogle ScholarPubMed
Serganov, A., Huang, L. & Patel, D. J. (2009). Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233237.CrossRefGoogle ScholarPubMed
Alvarez, A. F., Barba-Ostria, C., Silva-Jiménez, H. & Georgellis, D. (2016). Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environmental Microbiology 18, 32103226.CrossRefGoogle ScholarPubMed
Beier, D. & Gross, R. (2006). Regulation of bacterial virulence by two-component systems. Current Opinion in Microbiology 9, 143152.CrossRefGoogle ScholarPubMed
Buelow, D. R. & Raivio, T. L. (2010). Three (and more) component regulatory systems – auxiliary regulators of bacterial histidine kinases. Molecular Microbiology 75, 547566.CrossRefGoogle ScholarPubMed
Capra, E. J. & Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology 66, 325347.CrossRefGoogle ScholarPubMed
Desai, S. K. & Kenney, L. J. (2017). To ∼P or Not to ∼P? Non-canonical activation by two-component response regulators. Molecular Microbiology 103, 203213.CrossRefGoogle Scholar
Göpel, Y. & Görke, B. (2012). Rewiring two-component signal transduction with small RNAs. Current Opinion in Microbiology 15, 132139.CrossRefGoogle ScholarPubMed
Groisman, E. A. (2016). Feedback control of two-component regulatory systems. Annual Review of Microbiology 70, 103124.CrossRefGoogle ScholarPubMed
Jung, K., Fried, L., Behr, S. & Heermann, R. (2012). Histidine kinases and response regulators in networks. Current Opinion in Microbiology 15, 118124.CrossRefGoogle ScholarPubMed
Podgornaia, A. I. & Laub, M. T. (2013). Determinants of specificity in two-component signal transduction. Current Opinion in Microbiology 16, 156162.CrossRefGoogle ScholarPubMed
Salazar, M. E. & Laub, M. T. (2015). Temporal and evolutionary dynamics of two-component signaling pathways. Current Opinion in Microbiology 24, 714.CrossRefGoogle ScholarPubMed
Silversmith, R. E. (2010). Auxiliary phosphatases in two-component signal transduction. Current Opinion in Microbiology 13, 177183.CrossRefGoogle ScholarPubMed
Aseev, L. V., Koledinskaya, L. S. & Boni, I. V. (2016). Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. Journal of Bacteriology 198, 24942502.CrossRefGoogle ScholarPubMed
Schneider, D. A., Ross, W. & Gourse, R. L. (2003). Control of rRNA expression in Escherichia coli. Current Opinion in Microbiology 6, 151156.CrossRefGoogle ScholarPubMed
Mata, J., Marguerat, S. & Bahler, J. (2005). Post-transcriptional control of gene expression: a genome-wide perspective. Trends in Biochemical Sciences 30, 506514.CrossRefGoogle ScholarPubMed
Nogueira, T. & Springer, M. (2000). Post-transcriptional control by global regulators of gene expression in bacteria. Current Opinion in Microbiology 3, 154158.CrossRefGoogle ScholarPubMed
Romeo, T., Vakulskas, C. A. & Babitzke, P. (2013). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environmental Microbiology 15, 313324.CrossRefGoogle ScholarPubMed
Aït-Bara, S. & Carpousis, A. J. (2015). RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Molecular Microbiology 97, 10211135.CrossRefGoogle ScholarPubMed
Babitzke, P. (2004). Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Current Opinion in Microbiology 7, 132139.CrossRefGoogle ScholarPubMed
Condon, C. & Bechhofer, D. H. (2011). Regulated RNA stability in the Gram positives. Current Opinion in Microbiology 14, 148154.CrossRefGoogle ScholarPubMed
Hui, M. P., Foley, P. L. & Belasco, J. G. (2014). Messenger RNA degradation in bacterial cells. Annual Review of Genetics 48, 537559.CrossRefGoogle ScholarPubMed
Kennell, D. (2002). Processing endoribonucleases and mRNA degradation in bacteria. Journal of Bacteriology 184, 46454657.CrossRefGoogle ScholarPubMed
Kushner, S. R. (2002). mRNA decay in Escherichia coli comes of age. Journal of Bacteriology 184, 46584665.CrossRefGoogle ScholarPubMed
Mackie, G. A. (2013). RNase E: at the interface of bacterial RNA processing and decay. Nature Reviews Microbiology 11, 4557.CrossRefGoogle ScholarPubMed
Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D. & Brown, P. O. (2002). Precision and functional specificity in mRNA decay. Proceedings of the National Academy of Sciences of the USA 99, 58605865.CrossRefGoogle ScholarPubMed
Altegoer, F., Rensing, S. A. & Bange, G. (2016). Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proceedings of the National Academy of Sciences of the USA 113, 1016810173.CrossRefGoogle ScholarPubMed
Boni, I. V. (2006). Diverse molecular mechanisms of translation initiation in prokaryotes. Molecular Biology 40, 587596.CrossRefGoogle ScholarPubMed
Cahova, H., Winz, M.-L., Hofer, K., Nubel, G. & Jaschke, A. (2015). NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374377.CrossRefGoogle ScholarPubMed
Schlax, P. J. & Worhunsky, D. J. (2003). Translational repression mechanisms in prokaryotes. Molecular Microbiology 48, 11571169.CrossRefGoogle ScholarPubMed
Bobrovskyy, M. & Vanderpool, C. K. (2013). Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annual Review of Genetics 47, 209232.CrossRefGoogle ScholarPubMed
Bossi, L. & Figueroa-Bossi, N. (2016). Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nature Reviews Microbiology 14, 775784.CrossRefGoogle ScholarPubMed
Bouloc, P. & Repoila, F. (2016). Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Current Opinion in Microbiology 30, 3035.CrossRefGoogle ScholarPubMed
Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta 1575, 1525.CrossRefGoogle ScholarPubMed
DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J. R., Cruz, M. R., van Hoof, A., Winkler, W. C. & Garsin, D. A. (2014). A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345, 937940.CrossRefGoogle ScholarPubMed
Mars, R. A. T., Nicolas, P., Denham, E. L. & van Dijl, J. M. (2016). Regulatory RNAs in Bacillus subtilis: a Gram-positive perspective on bacterial RNA-mediated regulation of gene expression. Microbiology and Molecular Biology Reviews 80, 10291057.CrossRefGoogle ScholarPubMed
Mellin, J. R., Koutero, M., Dar, D., Nahori, M.-A., Sorek, R. & Cossart, P. (2014). Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345, 940943.CrossRefGoogle ScholarPubMed
Sherwood, A. V. & Henkin, T. M. (2016). Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annual Review of Microbiology 70, 361374.CrossRefGoogle ScholarPubMed
Storz, G., Opdyke, J. A. & Zhang, A. (2004). Controlling mRNA stability and translation with small, noncoding RNAs. Current Opinion in Microbiology 7, 140144.CrossRefGoogle ScholarPubMed
Bush, M. J., Tschowri, N., Schlimpert, S., Flardh, K. & Buttner, M. J. (2015). c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nature Reviews Microbiology 13, 749760.CrossRefGoogle ScholarPubMed
Chou, S.-H. & Galperin, M. Y. (2016). Diversity of cyclic di-GMP-binding proteins and mechanisms. Journal of Bacteriology 198, 3246.CrossRefGoogle ScholarPubMed
Gao, J., Tao, J., Liang, W. & Jiang, Z. (2016). Cyclic (di)nucleotides: the common language shared by microbe and host. Current Opinion in Microbiology 30, 7987.CrossRefGoogle ScholarPubMed
Hallez, R., Delaby, M., Sanselicio, S. & Viollier, P. H. (2017). Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nature Reviews Microbiology 15, 137148.CrossRefGoogle ScholarPubMed
Hengge, R., Gründling, A., Jenal, U., Ryan, R. & Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. Journal of Bacteriology 198, 1526.CrossRefGoogle ScholarPubMed
Jenal, U., Reinders, A. & Lori, C. (2017). Cyclic di-GMP: second messenger extraordinaire. Nature Reviews Microbiology 15, 271284.CrossRefGoogle ScholarPubMed
Römling, U., Galperin, M. Y. & Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews 77, 152.CrossRefGoogle ScholarPubMed
Ryan, R. P. (2013). Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology 159, 12861297.CrossRefGoogle ScholarPubMed
Bell, S. D. (2005). Archaeal transcriptional regulation – variation on a bacterial theme? Trends in Microbiology 13, 262265.CrossRefGoogle ScholarPubMed
Dennis, P. P., Omer, A. & Lowe, T. (2001). A guided tour: small RNA function in Archaea. Molecular Microbiology 40, 509519.CrossRefGoogle ScholarPubMed
Geiduschek, E. P. & Ouhammouch, M. (2005). Archaeal transcription and its regulators. Molecular Microbiology 56, 13971407.CrossRefGoogle ScholarPubMed
Karr, E. A. (2014). Transcription regulation in the third domain. Advances in Applied Microbiology. 89, 101133.CrossRefGoogle ScholarPubMed
Marchfelder, A., Fischer, S., Brendel, J., Stoll, B., Maier, L.-K., Jäger, D., Prasse, D., Plagens, A., Schmitz, R. & Randau, L. (2012). Small RNAs for defence and regulation in archaea. Extremophiles 16, 685696.CrossRefGoogle ScholarPubMed
Boutte, C. C. & Crosson, S. (2013). Bacterial lifestyle shapes stringent response activation. Trends in Microbiology 21, 174180.CrossRefGoogle ScholarPubMed
Braeken, K., Moris, M., Daniels, R., Vanderleyden, J. & Michiels, J. (2006). New horizons for (p)ppGpp in bacterial and plant physiology. Trends in Microbiology 14, 4554.CrossRefGoogle ScholarPubMed
Brown, A., Fernández, I. S., Gordiyenko, Y. & Ramakrishnan, V. (2016). Ribosome-dependent activation of stringent control. Nature 534, 277280.CrossRefGoogle ScholarPubMed
Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C. & Swanson, M. S. (2010). ppGpp conjures bacterial virulence. Microbiology & Molecular Biology Reviews 74, 171199.CrossRefGoogle ScholarPubMed
Dalebroux, Z. D. & Swanson, M. S. (2012). ppGpp: magic beyond RNA polymerase. Nature Reviews Microbiology 10, 203212.CrossRefGoogle ScholarPubMed
Gaca, A. O., Colomer-Winter, C. & Lemos, J. A. (2015). Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. Journal of Bacteriology 197, 11461156.CrossRefGoogle ScholarPubMed
Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. (2015). Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology 13, 298309.CrossRefGoogle ScholarPubMed
Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews 66, 373395.CrossRefGoogle ScholarPubMed
Magnusson, L. U., Farewell, A. & Nystrom, T. (2005). ppGpp: a global regulator in Escherichia coli. Trends in Microbiology 13, 236242.CrossRefGoogle ScholarPubMed
Amon, J., Titgemeyer, F. & Burkovski, A. (2010). Common patterns – unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiology Reviews 34, 588605.CrossRefGoogle ScholarPubMed
Arcondeguy, T., Jack, R. & Merrick, M. (2001). P-II signal transduction proteins, pivotal players in microbial nitrogen control. Microbiology and Molecular Biology Reviews 65, 80105.CrossRefGoogle ScholarPubMed
Commichau, F. M., Forchhammer, K. & Stulke, J. (2006). Regulatory links between carbon and nitrogen metabolism. Current Opinion in Microbiology 9, 167172.CrossRefGoogle ScholarPubMed
Forchhammer, K. (2004). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiology Reviews 28, 319333.CrossRefGoogle ScholarPubMed
Huergo, L. F., Chandra, G. & Merrick, M. (2013). PII signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiology Reviews 37, 251283.CrossRefGoogle ScholarPubMed
Ninfa, A. J. & Jiang, P. (2005). PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Current Opinion in Microbiology 8, 168173.CrossRefGoogle ScholarPubMed
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155176.CrossRefGoogle ScholarPubMed
Groisman, E. A. (2001). The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of Bacteriology 183, 18351842.CrossRefGoogle ScholarPubMed
Hsieh, Y.-J. & Wanner, B. L. (2010). Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13, 198203.CrossRefGoogle ScholarPubMed
Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. (2008). The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews 32, 461473.CrossRefGoogle ScholarPubMed
Martin, J. F. (2004). Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. Journal of Bacteriology 186, 51975201.CrossRefGoogle ScholarPubMed
Santos-Beneit, F. (2015). The Pho regulon: a huge regulatory network in bacteria. Frontiers in Microbiology 6, 402.CrossRefGoogle ScholarPubMed
Vershinina, O. A. & Znamenskaya, L. V. (2002). The pho regulons of bacteria. Microbiology-Moscow 71, 497511.CrossRefGoogle ScholarPubMed
Alvarez, A. F., Rodriguez, C. & Georgellis, D. (2013). Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. Journal of Bacteriology 195, 30543061.CrossRefGoogle ScholarPubMed
Bekker, M., Alexeeva, S., Laan, W., Sawers, G., Teixeira de Mattos, J. & Hellingwerf, K. (2010). The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. Journal of Bacteriology 192, 746754.CrossRefGoogle ScholarPubMed
Bettenbrock, K., Bai, H., Ederer, M., Green, J., Hellingwerf, K. J., Holcombe, M., Kunz, S., Rolfe, M. D., Sanguinetti, G., Sawodny, O., Sharma, P., Steinsiek, S. & Poole, R. K. (2014). Towards a systems level understanding of the oxygen response of Escherichia coli. Advances in Microbial Physiology 64, 65114.CrossRefGoogle ScholarPubMed
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263279.CrossRefGoogle ScholarPubMed
Lemmer, K. C., Dohnalkova, A. C., Noguera, D. R. & Donohue, T. J. (2015). Oxygen-dependent regulation of bacterial lipid production. Journal of Bacteriology 197, 16491658.CrossRefGoogle ScholarPubMed
Bauer, C. E., Elsen, S. & Bird, T. H. (1999). Mechanisms for redox control of gene expression. Annual Review of Microbiology 53, 495523.CrossRefGoogle ScholarPubMed
Crack, J. C., Green, J., Thomson, A. J. & Le Brun, N. E. (2012). Iron–sulfur cluster sensor-regulators. Current Opinion in Chemical Biology 16, 3544.CrossRefGoogle ScholarPubMed
Durand, S. & Storz, G. (2010). Reprogramming of anaerobic metabolism by the FnrS small RNA. Molecular Microbiology 75, 12151231.CrossRefGoogle ScholarPubMed
Green, J. & Paget, M. S. (2004). Bacterial redox sensors. Nature Reviews Microbiology 2, 954966.CrossRefGoogle ScholarPubMed
Härtig, E. & Jahn, D. (2012). Regulation of the anaerobic metabolism in Bacillus subtilis. Advances in Microbial Physiology 61, 195216.CrossRefGoogle ScholarPubMed
Kiley, P. J. & Beinert, H. (2003). The role of Fe–S proteins in sensing and regulation in bacteria. Current Opinion in Microbiology 6, 181185.CrossRefGoogle ScholarPubMed
Taylor, B. L., Zhulin, I. B. & Johnson, M. S. (1999). Aerotaxis and other energy-sensing behavior in bacteria. Annual Review of Microbiology 53, 103128.CrossRefGoogle ScholarPubMed
Unden, G. & Schirawski, J. (1997). The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Molecular Microbiology 25, 205210.CrossRefGoogle ScholarPubMed
Dubbs, J. M. & Mongkolsuk, S. (2012). Peroxide-sensing transcriptional regulators in bacteria. Journal of Bacteriology 194, 54955503.CrossRefGoogle ScholarPubMed
Glaeser, J., Nuss, A. M., Berghoff, B. A. & Klug, G. (2011). Singlet oxygen stress in microorganisms. Advances in Microbial Physiology 58, 141173.CrossRefGoogle ScholarPubMed
Gray, M. J. & Jakob, U. (2015). Oxidative stress protection by polyphosphate – new roles for an old player. Current Opinion in Microbiology 24, 16.CrossRefGoogle ScholarPubMed
Henningham, A., Döhrmann, S., Nizet, V. & Cole, J. N. (2015). Mechanisms of group A Streptococcus resistance to reactive oxygen spp. FEMS Microbiology Reviews 39, 488508.CrossRefGoogle Scholar
Imlay, J. A. (2015). Transcription factors that defend bacteria against reactive oxygen spp. Annual Review of Microbiology 69, 93108.CrossRefGoogle Scholar
Mols, M. & Abee, T. (2011). Primary and secondary oxidative stress in Bacillus. Environmental Microbiology 13, 13871394.CrossRefGoogle ScholarPubMed
Thamsen, M. & Jakob, U. (2011). The redoxome: proteomic analysis of cellular redox networks. Current Opinion in Chemical Biology 15, 113119.CrossRefGoogle ScholarPubMed
Yesilkaya, H., Andisi, V. F., Andrew, P. W. & Bijlsma, J. J. E. (2013). Streptococcus pneumoniae and reactive oxygen spp.: an unusual approach to living with radicals. Trends in Microbiology 21, 187195.CrossRefGoogle Scholar
Zhao, X. & Drlica, K. (2014). Reactive oxygen spp. and the bacterial response to lethal stress. Current Opinion in Microbiology 21, 16.CrossRefGoogle Scholar
Zuber, P. (2009). Management of oxidative stress in Bacillus. Annual Review of Microbiology 63, 575597.CrossRefGoogle ScholarPubMed
Bowman, L. A. H., McLean, S., Poole, R. K. & Fukuto, J. M. (2011). The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Advances in Microbial Physiology 59, 135219.CrossRefGoogle Scholar
Husain, M., Jones-Carson, J., Song, M., McCollister, B. D., Bourret, T. J. & Vázquez-Torres, A. (2010). Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proceedings of the National Academy of Sciences of the USA 107, 1439614401.CrossRefGoogle ScholarPubMed
Helmann, J. D., Wu, M. F. W., Kobel, P. A., Gamo, F. J., Wilson, M., Morshedi, M. M., Navre, M. & Paddon, C. (2001). Global transcriptional response of Bacillus subtilis to heat shock. Journal of Bacteriology 183, 73187328.CrossRefGoogle ScholarPubMed
Hirtreiter, A. M., Calloni, G., Forner, F., Scheibe, B., Puype, M., Vandekerckhove, J., Mann, M., Hartl, F. U. & Hayer-Hartl, M. (2009). Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Molecular Microbiology 74, 11521168.CrossRefGoogle Scholar
Kortmann, J. & Narberhaus, F. (2012). Bacterial RNA thermometers: molecular zippers and switches. Nature Reviews Microbiology 10, 255265.CrossRefGoogle ScholarPubMed
Laksanalamai, P., Maeder, D. L. & Robb, F. T. (2001). Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology 183, 51985202.CrossRefGoogle ScholarPubMed
Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews 33, 785800.CrossRefGoogle ScholarPubMed
Meyer, A. S. & Baker, T. A. (2011). Proteolysis in the Escherichia coli heat shock response: a player at many levels. Current Opinion in Microbiology 14, 194199.CrossRefGoogle ScholarPubMed
Schumann, W. (2016). Regulation of bacterial heat shock stimulons. Cell Stress and Chaperones 21, 959968.CrossRefGoogle ScholarPubMed
Barria, C., Malecki, M. & Arraiano, C. M. (2013). Bacterial adaptation to cold. Microbiology 159, 24372443.CrossRefGoogle ScholarPubMed
Cavicchioli, R., Thomas, T. & Curmi, P. M. G. (2000). Cold stress response in Archaea. Extremophiles 4, 321331.CrossRefGoogle ScholarPubMed
Graumann, P. & Marahiel, M. A. (1996). Some like it cold: response of micro-organisms to cold shock. Archives of Microbiology 166, 293300.CrossRefGoogle Scholar
Keto-Timonen, R., Hietala, N., Palonen, E., Hakakorpi, A., Lindström, M. & Korkeala, H. (2016). Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Frontiers in Microbiology 7, 1151.CrossRefGoogle ScholarPubMed
Sakamoto, T. & Murata, N. (2002). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Current Opinion in Microbiology 5, 206210.CrossRefGoogle ScholarPubMed
Shivaji, S. & Prakash, J. (2010). How do bacteria sense and respond to low temperature? Archives of Microbiology 192, 8595.CrossRefGoogle ScholarPubMed
Singh, A. K., Sad, K., Singh, S. K. & Shivaji, S. (2014). Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology 160, 12911296.CrossRefGoogle ScholarPubMed
Antunes, L. C. M., Ferreira, R. B. R., Buckner, M. M. C. & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. Microbiology 156, 22712282.CrossRefGoogle ScholarPubMed
Asfahl, K. L. & Schuster, M. (2017). Social interactions in bacterial cell–cell signaling. FEMS Microbiology Reviews 41, 92107.CrossRefGoogle ScholarPubMed
Banerjee, G. & Ray, A. K. (2016). The talking language in some major Gram-negative bacteria. Archives of Microbiology 198, 489499.CrossRefGoogle ScholarPubMed
Dandekar, A. A., Chugani, S. & Greenberg, E. P. (2012). Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264266.CrossRefGoogle ScholarPubMed
Decho, A. W., Norman, R. S. & Visscher, P. T. (2010). Quorum sensing in natural environments: emerging views from microbial mats. Trends in Microbiology 18, 7380.CrossRefGoogle ScholarPubMed
Frederix, M. & Downie, A. J. (2011). Quorum sensing: regulating the regulators. Advances in Microbial Physiology 58, 2380.CrossRefGoogle ScholarPubMed
Hense, B. A. & Schuster, M. (2015). Core principles of bacterial autoinducer systems. Microbiology and Molecular Biology Reviews 79, 153169.CrossRefGoogle ScholarPubMed
Jacob, E. B., Becker, I., Shapira, Y. & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology 12, 366372.CrossRefGoogle ScholarPubMed
Kalia, V. C. & Purohit, H. J. (2011). Quenching the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology 37, 121140.CrossRefGoogle ScholarPubMed
Monnet, V., Juillard, V. & Gardan, R. (2016). Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology 42, 339351.Google ScholarPubMed
Parsek, M. R. & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology 13, 2733.CrossRefGoogle ScholarPubMed
Rasmussen, T. B. & Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology 152, 895904.CrossRefGoogle ScholarPubMed
Ryan, R. P. & Dow, J. M. (2011). Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends in Microbiology 19, 145152.CrossRefGoogle ScholarPubMed
Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. (2013). Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology 67, 4363.CrossRefGoogle ScholarPubMed
Srivastava, D. & Waters, C. M. (2012). A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. Journal of Bacteriology 194, 44854493.CrossRefGoogle ScholarPubMed
Zhang, G., Zhang, F., Ding, G., Li, J., Guo, X., Zhu, J., Zhou, L., Cai, S., Liu, X., Luo, Y., Zhang, G., Shi, W. & Dong, X. (2012). Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME Journal 6, 13361344.CrossRefGoogle Scholar
Baños, R. C., Martínez, J., Polo, C., Madrid, C., Prenafeta, A. & Juárez, A. (2011). The yfeR gene of Salmonella enterica serovar Typhimurium encodes an osmoregulated LysR-type transcriptional regulator. FEMS Microbiology Letters 315, 6371.CrossRefGoogle ScholarPubMed
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 4971.CrossRefGoogle ScholarPubMed
Tipton, K. A. & Rather, P. N. (2017). An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. Journal of Bacteriology 199, e0070516.CrossRefGoogle ScholarPubMed
Wood, J. M. (2011). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annual Review of Microbiology 65, 215238.CrossRefGoogle Scholar
Aizawa, S., Harwood, C. S. & Kadner, R. J. (2000). Signaling components in bacterial locomotion and sensory reception. Journal of Bacteriology 182, 14591471.CrossRefGoogle ScholarPubMed
Alexandre, G. (2010). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156, 22832293.CrossRefGoogle ScholarPubMed
Brown, M. T., Delalez, N. J. & Armitage, J. P. (2011). Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Current Opinion in Microbiology 14, 734740.CrossRefGoogle ScholarPubMed
De Lay, N. & Gottesman, S. (2012). A complex network of small non-coding RNAs regulate motility in Escherichia coli. Molecular Microbiology 86, 524538.CrossRefGoogle ScholarPubMed
Hazelbauer, G. L. (2012). Bacterial chemotaxis: the early years of molecular studies. Annual Review of Microbiology 66, 285303.CrossRefGoogle ScholarPubMed
Krell, T., Lacal, J., Muñoz-Martínez, F., Reyes-Darias, J. A., Cadirci, B. H., García-Fontana, C. & Ramos, J. L. (2011). Diversity at its best: bacterial taxis. Environmental Microbiology 13, 11151124.CrossRefGoogle ScholarPubMed
Porter, S. L., Wadhams, G. H. & Armitage, J. P. (2011). Signal processing in complex chemotaxis pathways. Nature Reviews Microbiology 9, 153165.CrossRefGoogle ScholarPubMed
Szurmant, H. & Ordal, G. W. (2004). Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiology and Molecular Biology Reviews 68, 301319.CrossRefGoogle ScholarPubMed
Yuan, J., Branch, R. W., Hosu, B. G. & Berg, H. C. (2012). Adaptation at the output of the chemotaxis signalling pathway. Nature 484, 233236.CrossRefGoogle ScholarPubMed
Aertsen, A. & Michiels, C. W. (2005). Diversify or die: generation of diversity in response to stress. Critical Reviews in Microbiology 31, 6978.CrossRefGoogle ScholarPubMed
Andersson, D. I. & Hughes, D. (2009). Gene amplification and adaptive evolution in bacteria. Annual Review of Genetics 43, 167195.CrossRefGoogle ScholarPubMed
Dubnau, D. & Losick, R. (2006). Bistability in bacteria. Molecular Microbiology 61, 564572.CrossRefGoogle ScholarPubMed
Foster, P. L. (1993). Adaptive mutation: the uses of adversity. Annual Review of Microbiology 47, 467504.CrossRefGoogle ScholarPubMed
Wright, B. E. (2004). Stress-directed adaptive mutations and evolution. Molecular Microbiology 52, 643650.CrossRefGoogle ScholarPubMed
Dworkin, J. (2015). Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology 24, 4752.CrossRefGoogle ScholarPubMed
Eoh, H. & Rhee, K. Y. (2014). Allostery and compartmentalization: old but not forgotten. Current Opinion in Microbiology 18, 2329.CrossRefGoogle Scholar
Gur, E., Biran, D. & Ron, E. Z. (2011). Regulated proteolysis in Gram-negative bacteria – how and when?Nature Reviews Microbiology 9, 839848.CrossRefGoogle ScholarPubMed
Hu, L. I., Lima, B. P. & Wolfe, A. J. (2010). Bacterial protein acetylation: the dawning of a new age. Molecular Microbiology 77, 1521.CrossRefGoogle ScholarPubMed
Itzen, A., Blankenfeldt, W. & Goody, R. S. (2011). Adenylylation: renaissance of a forgotten post-translational modification. Trends in Biochemical Sciences 36, 221228.CrossRefGoogle ScholarPubMed
Loi, V. V., Rossius, M. & Antelmann, H. (2015). Redox regulation by reversible protein S-thiolation in bacteria. Frontiers in Microbiology 6, 187.CrossRefGoogle ScholarPubMed
Mijakovic, I., Grangeasse, C. & Turgay, K. (2016). Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiology Reviews 40, 398417.CrossRefGoogle ScholarPubMed
Pisithkul, T., Patel, N. M. & Amador-Noguez, D. (2015). Post-translational modifications as key regulators of bacterial metabolic fluxes. Current Opinion in Microbiology 24, 2937.CrossRefGoogle ScholarPubMed
Soufi, B., Soares, N. C., Ravikumar, V. & Macek, B. (2012). Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Current Opinion in Microbiology 15, 357363.CrossRefGoogle ScholarPubMed
Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, J. R. & Hwa, T. (2015). Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99104.CrossRefGoogle ScholarPubMed
Edwards, J. S., Covert, M. & Palsson, B. (2002). Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology 4, 133140.CrossRefGoogle ScholarPubMed
El-Mansi, M., Cozzone, A. J., Shiloach, J. & Eikmanns, B. J. (2006). Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Current Opinion in Microbiology 9, 173179.CrossRefGoogle ScholarPubMed
Gerosa, L. & Sauer, U. (2011). Regulation and control of metabolic fluxes in microbes. Current Opinion in Biotechnology 22, 566575.CrossRefGoogle ScholarPubMed
Hengge, R. & Gourse, R. L. (2004). Cell regulation: tying together the cellular regulatory network. Current Opinion in Microbiology 7, 99101.CrossRefGoogle Scholar
Jung, K., Fried, L., Behr, S. & Heermann, R. (2012). Histidine kinases and response regulators in networks. Current Opinion in Microbiology 15, 118124.CrossRefGoogle ScholarPubMed
Leyn, S. A. D., Kazanov, M., Sernova, N. V., Ermakova, E. O., Novichkov, P. S. & Rodionov, D. A. (2013). Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis. Journal of Bacteriology 195, 24632473.CrossRefGoogle ScholarPubMed
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505512.CrossRefGoogle ScholarPubMed
Potrykus, K., Murphy, H., Philippe, N. & Cashel, M. (2011). ppGpp is the major source of growth rate control in E. coli. Environmental Microbiology 13, 563575.CrossRefGoogle ScholarPubMed
van Heeswijk, W. C., Westerhoff, H. V. & Boogerd, F. C. (2013). Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiology and Molecular Biology Reviews 77, 628695.CrossRefGoogle ScholarPubMed
Liu, G., Chater, K. F., Chandra, G., Niu, G. & Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews 77, 112143.CrossRefGoogle ScholarPubMed
Urem, M., Świątek-Połatyńska, M. A., Rigali, S. & van Wezel, G. P. (2016). Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Molecular Microbiology 102, 183195.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×