Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T23:23:50.442Z Has data issue: false hasContentIssue false

Chapter 13 - Energy, environment and microbial survival

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Aertsen, A. & Michiels, C. (2004). Stress and how bacteria cope with death and survival. Critical Reviews in Microbiology 30, 263273.CrossRefGoogle ScholarPubMed
Errington, J., Daniel, R. A. & Scheffers, D. J. (2003). Cytokinesis in bacteria. Microbiology and Molecular Biology Reviews 67, 5265.CrossRefGoogle ScholarPubMed
Ferenci, T. (2001). Hungry bacteria: definition and properties of a nutritional state. Environmental Microbiology 3, 605611.CrossRefGoogle ScholarPubMed
Kempes, C. P., van Bodegom, P. M., Wolpert, D., Libby, E., Amend, J. & Hoehler, T. (2017). Drivers of bacterial maintenance and minimal energy requirements. Frontiers in Microbiology 8, 31.CrossRefGoogle ScholarPubMed
Lever, M. A., Rogers, K. L., Lloyd, K. G., Overmann, J., Schink, B., Thauer, R. K., Hoehler, T. M. & Jørgensen, B. B. (2015). Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews 39, 688728.CrossRefGoogle ScholarPubMed
Matic, I., Taddei, F. & Radman, M. (2004). Survival versus maintenance of genetic stability: a conflict of priorities during stress. Research in Microbiology 155, 337341.CrossRefGoogle ScholarPubMed
Mukamolova, G. V., Kaprelyants, A. S., Kell, D. B. & Young, M. (2003). Adoption of the transiently non-culturable state – a bacterial survival strategy?Advances in Microbial Physiology 47, 65129.CrossRefGoogle Scholar
Nystrom, T. (2004). Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Molecular Microbiology 54, 855862.CrossRefGoogle ScholarPubMed
Peterson, C. N., Mandel, M. J. & Silhavy, T. J. (2005). Escherichia coli starvation diets: essential nutrients weigh in distinctly. Journal of Bacteriology 187, 75497553.CrossRefGoogle ScholarPubMed

Secondary Sources

Chandra, G., Chater, K. F. & Bornemann, S. (2011). Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157, 15651572.CrossRefGoogle ScholarPubMed
Elbein, A. D., Pastuszak, I., Tackett, A. J., Wilson, T. & Pan, Y. T. (2010). Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose-1-phosphate to glycogen. Journal of Biological Chemistry 285, 98039812.CrossRefGoogle ScholarPubMed
Wilson, W. A., Roach, P. J., Montero, M., Baroja-Fernández, E., Muñoz, F. J., Eydallin, G., Viale, A. M. & Pozueta-Romero, J. (2010). Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews 34, 952985.CrossRefGoogle ScholarPubMed
Alvarez, H. M. & Steinbuchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology 60, 367376.Google ScholarPubMed
Herman, N. A. & Zhang, W. (2016). Enzymes for fatty acid-based hydrocarbon biosynthesis. Current Opinion in Chemical Biology 35, 2228.CrossRefGoogle ScholarPubMed
Jendrossek, D. & Pfeiffer, D. (2014). New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environmental Microbiology 16, 23572373.CrossRefGoogle ScholarPubMed
Jiménez-Díaz, L., Caballero, A., Pérez-Hernández, N. & Segura, A. (2017). Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microbial Biotechnology 10, 103124.CrossRefGoogle Scholar
Low, K. L., Shui, G., Natter, K., Yeo, W. K., Kohlwein, S. D., Dick, T., Rao, S. P. S. & Wenk, M. R. (2010). Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Biological Chemistry 285, 2166221670.CrossRefGoogle ScholarPubMed
Maestro, B. & Sanz, J. M. (2017). Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microbial Biotechnology 10, 13231337.CrossRefGoogle ScholarPubMed
Stubbe, J., Tian, J., He, A., Sinskey, A. J., Lawrence, A. G. & Liu, P. (2005). Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annual Review of Biochemistry 74, 433480.CrossRefGoogle ScholarPubMed
Waltermann, M. & Steinbuchel, A. (2005). Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. Journal of Bacteriology 187, 36073619.CrossRefGoogle ScholarPubMed
Baykov, A. A., Malinen, A. M., Luoto, H. H. & Lahti, R. (2013). Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiology and Molecular Biology Reviews 77, 267276.CrossRefGoogle Scholar
Brown, M. R. & Kornberg, A. (2004). Inorganic polyphosphate in the origin and survival of species. Proceedings of the National Academy of Sciences of the USA 101, 1608516087.CrossRefGoogle ScholarPubMed
Garcia-Contreras, R., Celis, H. & Romero, I. (2004). Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. Journal of Bacteriology 186, 66516655.CrossRefGoogle ScholarPubMed
Gray, M. J. & Jakob, U. (2015). Oxidative stress protection by polyphosphate – new roles for an old player. Current Opinion in Microbiology 24, 16.CrossRefGoogle ScholarPubMed
Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K. & Goldman, A. (2012). The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337, 473476.CrossRefGoogle ScholarPubMed
Kulaev, I. & Kulakovskaya, T. (2000). Polyphosphate and phosphate pump. Annual Review of Microbiology 54, 709734.CrossRefGoogle ScholarPubMed
Toso, D. B., Henstra, A. M., Gunsalus, R. P. & Zhou, Z. H. (2011). Structural, mass and elemental analyses of storage granules in methanogenic archaeal cells. Environmental Microbiology 13, 25872599.CrossRefGoogle ScholarPubMed
Heinrich, K., Leslie, D. J. & Jonas, K. (2015). Modulation of bacterial proliferation as a survival strategy. Advances in Applied Microbiology. 92, 127171.CrossRefGoogle ScholarPubMed
Kaprelyants, A. S., Gottschal, J. C. & Kell, D. B. (1993). Dormancy in nonsporulating bacteria. FEMS Microbiology Reviews 10, 271286.CrossRefGoogle Scholar
Al-Hinai, M. A., Jones, S. W. & Papoutsakis, E. T. (2015). The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiology and Molecular Biology Reviews 79, 1937.CrossRefGoogle ScholarPubMed
Errington, J. (2001). Septation and chromosome segregation during sporulation in Bacillus subtilis. Current Opinion in Microbiology 4, 660666.CrossRefGoogle ScholarPubMed
Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Current Opinion in Microbiology 24, 8895.CrossRefGoogle ScholarPubMed
González-Pastor, J. E. (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiology Reviews 35, 415424.CrossRefGoogle ScholarPubMed
Higgins, D. & Dworkin, J. (2012). Recent progress in Bacillus subtilis sporulation. FEMS Microbiology Reviews 36, 131148.CrossRefGoogle ScholarPubMed
Hilbert, D. W. & Piggot, P. J. (2004). Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiology and Molecular Biology Reviews 68, 234262.CrossRefGoogle ScholarPubMed
McKenney, P. T., Driks, A. & Eichenberger, P. (2013). The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology 11, 3344.CrossRefGoogle ScholarPubMed
Moir, A. (2003). Bacterial spore germination and protein mobility. Trends in Microbiology 11, 452454.CrossRefGoogle ScholarPubMed
Paredes-Sabja, D., Setlow, P. & Sarker, M. R. (2011). Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in Microbiology 19, 8594.CrossRefGoogle ScholarPubMed
Setlow, P. (2014). Germination of spores of Bacillus species: what we know and do not know. Journal of Bacteriology 196, 12971305.CrossRefGoogle Scholar
Stephenson, K. & Hoch, J. A. (2002). Evolution of signalling in the sporulation phosphorelay. Molecular Microbiology 46, 297304.CrossRefGoogle ScholarPubMed
Loiko, N., Kryazhevskikh, N., Suzina, N., Demkina, E., Muratova, A., Turkovskaya, O., Kozlova, A., Galchenko, V. & El’-Registan, G. (2011). Resting forms of Sinorhizobium meliloti. Microbiology-Moscow 80, 472482.CrossRefGoogle ScholarPubMed
Marden, J. N., Dong, Q., Roychowdhury, S., Berleman, J. E. & Bauer, C. E. (2011). Cyclic GMP controls Rhodospirillum centenum cyst development. Molecular Microbiology 79, 600615.CrossRefGoogle ScholarPubMed
Bari, S. M. N., Roky, M. K., Mohiuddin, M., Kamruzzaman, M., Mekalanos, J. J. & Faruque, S. M. (2013). Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proceedings of the National Academy of Sciences of the USA 110, 99269931.CrossRefGoogle ScholarPubMed
Cohen-Gonsaud, M., Keep, N. H., Davies, A. P., Ward, J., Henderson, B. & Labesse, G. (2004). Resuscitation-promoting factors possess a lysozyme-like domain. Trends in Biochemical Sciences 29, 710.CrossRefGoogle ScholarPubMed
Epstein, S. S. (2013). The phenomenon of microbial uncultivability. Current Opinion in Microbiology 16, 636642.CrossRefGoogle ScholarPubMed
Kell, D. B. & Young, M. (2000). Bacterial dormancy and culturability: the role of autocrine growth factors. Current Opinion in Microbiology 3, 238243.CrossRefGoogle ScholarPubMed
Oliver, J. D. (2005). The viable but nonculturable state in bacteria. Journal of Microbiology-Seoul 43, 93100.Google ScholarPubMed
Pinto, D., Santos, M. A. & Chambel, L. (2015). Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Critical Reviews in Microbiology 41, 6176.CrossRefGoogle ScholarPubMed
Sexton, D. L., St-Onge, R. J., Haiser, H. J., Yousef, M. R., Brady, L., Gao, C., Leonard, J. & Elliot, M. A. (2015). Resuscitation-promoting factors are cell wall-lytic enzymes with important roles in the germination and growth of Streptomyces coelicolor. Journal of Bacteriology 197, 848860.CrossRefGoogle ScholarPubMed
Gerdes, K. & Maisonneuve, E. (2012). Bacterial persistence and toxin–antitoxin loci. Annual Review of Microbiology 66, 103123.CrossRefGoogle ScholarPubMed
Harms, A., Maisonneuve, E. & Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, 13901399.CrossRefGoogle ScholarPubMed
Lewis, K. (2010). Persister cells. Annual Review of Microbiology 64, 357372.CrossRefGoogle ScholarPubMed
Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (2013). (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell 154, 11401150.CrossRefGoogle ScholarPubMed
Duda, V., Suzina, N., Polivtseva, V. & Boronin, A. (2012). Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology-Moscow 81, 379390.CrossRefGoogle ScholarPubMed
Silbaq, F. S. (2009). Viable ultramicrocells in drinking water. Journal of Applied Microbiology 106, 106117.CrossRefGoogle ScholarPubMed
Vainshtein, M. B. & Kudryashova, E. B. (2000). Nanobacteria. Microbiology-Moscow 69, 129138.CrossRefGoogle Scholar
Durand, P. M., Sym, S. & Michod, R. E. (2016). Programmed cell death and complexity in microbial systems. Current Biology 26, R587R593.CrossRefGoogle ScholarPubMed
Lewis, K. (2000). Programmed death in bacteria. Microbiology and Molecular Biology Reviews 64, 503514.CrossRefGoogle ScholarPubMed
Prozorov, A. & Danilenko, V. (2011). Allolysis in bacteria. Microbiology-Moscow 80, 19.CrossRefGoogle Scholar
Ramisetty, B. C. M., Natarajan, B. & Santhosh, R. S. (2015). mazEF-mediated programmed cell death in bacteria: “What is this?”. Critical Reviews in Microbiology 41, 89100.CrossRefGoogle Scholar
Rice, K. C. & Bayles, K. W. (2003). Death’s toolbox: examining the molecular components of bacterial programmed cell death. Molecular Microbiology 50, 729738.CrossRefGoogle ScholarPubMed
Brantl, S. & Jahn, N. (2015). sRNAs in bacterial type I and type III toxin–antitoxin systems. FEMS Microbiology Reviews 39, 413427.CrossRefGoogle ScholarPubMed
Chan, W. T., Moreno-Córdoba, I., Yeo, C. C. & Espinosa, M. (2012). Toxin–antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: So few and yet so many. Microbiology and Molecular Biology Reviews 76, 773791.CrossRefGoogle ScholarPubMed
Lobato-Márquez, D., Díaz-Orejas, R. & García-del Portillo, F. (2016). Toxin–antitoxins and bacterial virulence. FEMS Microbiology Reviews 40, 592609.CrossRefGoogle ScholarPubMed
Yamaguchi, Y., Park, J.-H. & Inouye, M. (2011). Toxin–antitoxin systems in bacteria and archaea. Annual Review of Genetics 45, 6179.CrossRefGoogle ScholarPubMed
Barrangou, R. & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nature Biotechnology 34, 933941.CrossRefGoogle ScholarPubMed
Bondy-Denomy, J. and Davidson, A.R. (2015). To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends in Microbiology 22, 218225.CrossRefGoogle Scholar
Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429432.CrossRefGoogle ScholarPubMed
Dedrick, R. M., Jacobs-Sera, D., et al. (2017). Prophage-mediated defence against viral attack and viral counter-defence. Nature Microbiology 2, 16251.CrossRefGoogle ScholarPubMed
Doerflinger, M., Forsyth, W., Ebert, G., Pellegrini, M. & Herold, M. J. (2017). CRISPR/Cas9 – the ultimate weapon to battle infectious diseases? Cellular Microbiology 19, e12693.CrossRefGoogle ScholarPubMed
Doudna, J. A. & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.CrossRefGoogle ScholarPubMed
Garneau, J. E., Dupuis, M.-E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A. H. & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 6771.CrossRefGoogle ScholarPubMed
Heussler, G. E. & O’Toole, G. A. (2016). Friendly fire: Biological functions and consequences of chromosomal targeting by CRISPR–Cas systems. Journal of Bacteriology 198, 14811486.CrossRefGoogle ScholarPubMed
Jackson, S. A., McKenzie, R. E., Fagerlund, R. D., Kieper, S. N., Fineran, P. C. & Brouns, S. J. J. (2017). CRISPR–Cas: adapting to change. Science 356, eaal5056.CrossRefGoogle ScholarPubMed
Louwen, R., Staals, R. H. J., Endtz, H. P., van Baarlen, P. & van der Oost, J. (2014). The role of CRISPR–Cas systems in virulence of pathogenic bacteria. Microbiology and Molecular Biology Reviews 78, 7488.CrossRefGoogle ScholarPubMed
Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M., Yakunin, F. A. F., Garrett, R. A., van der Oost, J., Backofen, R. & Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology 13, 722736.CrossRefGoogle ScholarPubMed
Marraffini, L. A. (2015). CRISPR–Cas immunity in prokaryotes. Nature 526, 5561.CrossRefGoogle ScholarPubMed
Mojica, F. J. M. & Rodriguez-Valera, F. (2016). The discovery of CRISPR in archaea and bacteria. FEBS Journal 283, 31623169.CrossRefGoogle ScholarPubMed
Peters, J. M., Silvis, M. R., Zhao, D., Hawkins, J. S., Gross, C. A. & Qi, L. S. (2015). Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology 27, 121126.CrossRefGoogle ScholarPubMed
Selle, K. & Barrangou, R. (2015). Harnessing CRISPR–Cas systems for bacterial genome editing. Trends in Microbiology 23, 225232.CrossRefGoogle ScholarPubMed
Sorek, R., Lawrence, C. M. & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry 82, 237266.CrossRefGoogle ScholarPubMed
van Houte, S., Buckling, A. & Westra, E. R. (2016). Evolutionary ecology of prokaryotic immune mechanisms. Microbiology and Molecular Biology Reviews 80, 745763.CrossRefGoogle ScholarPubMed
Claverys, J. P., Prudhomme, M. & Martin, B. (2006). Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annual Review of Microbiology 60, 451475.CrossRefGoogle ScholarPubMed
Krüger, N.-J. & Stingl, K. (2011). Two steps away from novelty – principles of bacterial DNA uptake. Molecular Microbiology 80, 860867.CrossRefGoogle ScholarPubMed
Martin, B., Quentin, Y., Fichant, G. & Claverys, J. P. (2006). Independent evolution of competence regulatory cascades in streptococci? Trends in Microbiology 14, 339345.CrossRefGoogle ScholarPubMed
Mell, J. C. & Redfield, R. J. (2014). Natural competence and the evolution of DNA uptake specificity. Journal of Bacteriology 196, 14711483.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×