Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T08:46:13.968Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2013

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Programming with Mathematica®
An Introduction
, pp. 687 - 694
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callaway, Duncan S., Mark E.J., Newman, Steven H., Strogatz, and Duncan J., Watts. 2000. Network robustness and fragility: percolation on random graphs. Physical Review Letters, 5, 355–360.Google Scholar
Grimmett, Geoffrey. 1999. Percolation, second edition. Springer.CrossRefGoogle Scholar
Moore, Cristopher and Mark E.J., Newman. 2000. Exact solution of bond percolation on small-world networks. Physical Review E, 62, 7059–7064.CrossRefGoogle ScholarPubMed
National Elevation Dataset. US Geological Survey, http://ned.usgs.gov/downloads.asp.
Padmanabhan, Thanu. 1998. After the First Three Minutes: The Story of our Universe. Cambridge University Press.CrossRefGoogle Scholar
Stauffer, Dietrich and Ammon, Aharony. 1994. Introduction to Percolation Theory, second edition. Taylor & Francis.Google Scholar
C/C++ Language Interface. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/guide/CLanguageInterface.html.
Database Connectivity. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/guide/DatabaseConnectivity.html.
Entering Two-Dimensional Input. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-mathematica/tutorial/EnteringTwoDimensionalInput.html.
J/Link User Guide. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/JLink/tutorial/Overview.html.
.NET/Link User Guide. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/NETLink/tutorial/Overview.html.
Two-Dimensional Expression Input. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-mathematica/tutorial/TwoDimensionalExpressionInputOverview.html.
Using a Notebook Interface. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/UsingANotebookInterface.html.
Working with Cells. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/WorkingWithCells.html.
Enderton, Herbert B. 1972. A Mathematical Introduction to Logic. Academic Press.Google Scholar
Maeder, Roman E. 1992. The design of the Mathematica programming language. Dr. Dobb's Journal, 17(4), 86.Google Scholar
Maeder, Roman E. 1997. Programming in Mathematica, third edition. Addison-Wesley.Google Scholar
Maeder, Roman E. 2000. Computer Science with Mathematica: Theory and Practice for Science, Mathematics, and Engineering. Cambridge University Press.Google Scholar
Attributes. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/Attributes.html.
Evaluation of Expressions. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/EvaluationOfExpressionsOverview.html.
Evaluation: The Standard Evaluation Sequence. Wolfram Mathematica Documentation Center, http://reference.-wolfram.com/mathematica/tutorial/Evaluation.html.
Operator Input Forms. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/OperatorInputForms.html.
Davis, Timothy A. and Yifan, Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1–25.CrossRefGoogle Scholar
Duff, Iain S., Roger G., Grimes, and John G., Lewis. 1989. Sparse matrix test problems. ACM Transactions on Mathematical Software, 15(1), 1–14. doi.acm.org/10.1145/62038.62043.CrossRefGoogle Scholar
Watts, Duncan J. and Steven H., Strogatz. 1998. Collective dynamics of small-world networks. Nature, 393, 440–442.CrossRefGoogle Scholar
Lagarias, Jeffrey. 1985. The 3x + 1 problem. American Mathematical Monthly, 92, 3–23.CrossRefGoogle Scholar
Maeder, Roman E. 1994. Animated algorithms. The Mathematica Journal, 4(4), 86, www.mathematica-journal.com/issue/v4i4/columns/maeder.Google Scholar
Sedgewick, Robert and Kevin, Wayne. 2011. Algorithms, fourth edition. Addison-Wesley.Google Scholar
Wagon, Stan. 1999. Mathematica in Action, second edition. TELOS/Springer-Verlag.CrossRefGoogle Scholar
Brent, Richard P. 1980. An improved Monte Carlo factorization algorithm. BIT, 20(2), 176–184, http://mathspeople.anu.edu.au/~brent/pd/rpb051a.pdf.CrossRefGoogle Scholar
Crandall, Richard E. and Carl, Pomerance. 2005. Prime Numbers: A Computational Perspective, second edition. Springer.Google Scholar
Diaconis, Persi and Dave, Bayer. 1992. Trailing the dovetail shuffle to its lair. Annals of Applied Probability, 2(2), 294–313, http://projecteuclid.org/euclid.aoap/1177005705.Google Scholar
Diaconis, Persi, Ron L., Graham, and William M., Kantor. 1983. The mathematics of perfect shuffles. Advances in Applied Mathematics, 4(2), 175–196, www-stat.stanford.edu/~cgates/PERSI/papers/83_ 05_shuffles.pdf.CrossRefGoogle Scholar
Dijkstra, Edsger W. 1981. Hamming's exercise in SASL. Report EWD792, www.cs.utexas.edu/user-s/EWD/ewd07xx/EWD792.PDF.
Floyd, Robert W. 1962. Algorithm 97: shortest path. Communications of the ACM, 5(6).CrossRefGoogle Scholar
Graham, Ronald, Donald E., Knuth, and Oren, Patashnik. 1994. Concrete Mathematics: A Foundation for Computer Science, second edition. Addison-Wesley.Google Scholar
Hamming, Richard W. 1950. Error detecting and error correcting codes. Bell System Technical Journal, 29(2), 147–160.CrossRefGoogle Scholar
Herstein, Israel N. and Irving, Kaplansky. 1978. Matters Mathematical. AMS Chelsea Publishing.Google Scholar
Hoffman, Paul. 1998. The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth. Hyperion.Google Scholar
Knuth, Donald E. 1993. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press.Google Scholar
Meringer, Markus and Eric W., Weisstein. Regular, graph. MathWorld, http://mathworld.wolfram.com/Regular-Graph.html.
De Las Rivas, J. and C., Fontanillo. 2010. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Computational Biology, 6(6): e1000807. doi:10.1371/journal.pcbi.1000807.CrossRefGoogle ScholarPubMed
Sedgewick, Robert and Kevin, Wayne. 2011. Algorithms, fourth edition. Addison-Wesley.Google Scholar
Worm interactome database. Center for Cancer Systems Biology, http://interactome.dfci.harvard.edu/C_elegans.
Knuth, Donald E. 1998. The Art of Computer Programming, Volume 3: Sorting and Searching, second edition. Addison-Wesley.Google Scholar
Lagarias, Jeffrey C., Victor S., Miller, and Andrew M., Odlyzko. 1985. Computing pHxL: the Meissel–Lehmer method. Mathematics of Computation, 44, 537–560.Google Scholar
Lagarias, Jeffrey C. and Andrew M., Odlyzko. 1987. Computing pHxL: an analytic method. Journal of Algorithms, 8, 173–191.CrossRefGoogle Scholar
Press, William H., Saul A., Teukolsky, William T., Vetterling, and Brian P., Flannery. 2007. Numerical Recipes: The Art of Scientific Computing, third edition. Cambridge University Press.Google Scholar
Rust, Bert W. and Walter R., Burrus. 1972. Mathematical Programming and the Numerical Solution of Linear Equations. American Elsevier.Google Scholar
Weisstein, Eric W. Lucky number. MathWorld, http://mathworld.wolfram.com/LuckyNumber.html.
Graham, Ronald, Donald E., Knuth, and Oren, Patashnik. 1994. Concrete Mathematics: A Foundation for Computer Science, second edition. Addison-Wesley.Google Scholar
HaskellWiki, . The Fibonacci sequence. The Haskell Programming Language, www.haskell.org/haskellwiki/The_Fibonacci_sequence.
Knuth, Donald E. 1997. The Art of Computer Programming Volume 1: Fundamental Algorithms, third edition. Addison-Wesley.Google Scholar
Knuth, Donald E. 2001. Textbook examples of recursion, in Selected Papers on Analysis of Algorithms. Center for the Study of Language and Information, http://arxiv.org/abs/cs/9301113.Google Scholar
Pemmaraju, Sriram V. and Steven S., Skiena. 2003. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press.CrossRefGoogle Scholar
Bailey, David H., Jonathan M., Borwein, Cristian S., Calude, et al. 2012. Normality and the digits of π, www.david-hbailey.com/dhbpapers/normality-digits-pi.pdf.
Box, George E.P., Gwilym M., Jenkins, and Gregory C., Reinsel. 2008. Time Series Analysis: Forecasting and Control, fourth edition. John Wiley & Sons.CrossRefGoogle Scholar
Burden, Richard L. and J. Douglas, Faires. 2001. Numerical Analysis, seventh edition. Brooks/Cole.Google Scholar
Chatfield, Christopher. 2004. The Analysis of Time Series: An Introduction, fourth edition. Chapman & Hall/CRC Press.Google Scholar
,Costa, Luciano da Fontoura and Roberto Marcondes Cesar. 2001. Shape Analysis and Classification: Theory and Practice. CRC Press.Google Scholar
Cover, Thomas M. and Joy A., Thomas. 2006. Elements of Information Theory, second edition. Wiley Interscience.Google Scholar
Goldberg, David. 1991. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1), 5–47. Reprint available online at www.validlab.com/goldberg/paper.pdf.CrossRefGoogle Scholar
Hayes, Allan. 1992. Sum of cubes of digits, driven to abstraction. Mathematica in Education, 1(4), 3–11.Google Scholar
Kenny, Charmaine. Random number generators: an evaluation and comparison of random.org and some commonly used generators. Management Science and Information Systems Studies, Trinity College Dublin, www.random.org/-analysis/Analysis2005.pdf.
Knapp, Rob. 2001. Numerical Mathematica. 2001 International Mathematica Symposium, http://library.wolfram.com/infocenter/Conferences/4044.Google Scholar
Knuth, Donald E. 1997. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, third edition. Addison-Wesley.Google Scholar
Manning, Christopher D. and Hinrich, Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT Press.Google Scholar
Muller, Jean-Michel, Nicolas, Brisebarre, Florent, de Dinechin, et al. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser.CrossRefGoogle Scholar
National Institute of Standards and Technology. Nist/Sematech e-handbook of statistical methods, www.itl.nist.gov/-div898/handbook.
,National Institute of Standards and Technology. Sparse matrix collection, http://math.nist.gov/MatrixMarket/collections/hb.html.
Rudnick, Joseph and George, Gaspari. 2004. Elements of the Random Walk: An Introduction for Advanced Students and Researchers. Cambridge University Press.CrossRefGoogle Scholar
Rukhin, Andrew, Juan, Soto, James, Nechvatal, et al. 2010. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards and Technology. Special publication 800–22, Rev. 1a.Google Scholar
Shannon, Claude E. 1948. A mathematical theory of computation. Bell System Technical Journal, 27, 379–423 and 623–656. Reprint available online at http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.CrossRefGoogle Scholar
Skeel, Robert D. and Jerry B., Keiper. 1993. Elementary Numerical Computing with Mathematica. McGraw-Hill.Google Scholar
Soto, Juan. Statistical testing of random number generators. National Institute of Standards and Technology, http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf.
Borges, Jorge Luis. 1983. The Library of Babel, in Labyrinths: Selected Short Stories & Other Writings. Modern Library.Google Scholar
British Academic Spoken English (Base) and Base Plus Collections. Centre for Applied Linguistics, University of Warwick. www2.warwick.ac.uk/fac/soc/al/research/collect/base.
Chomsky, Noam. 2002. Syntactic Structures, second edition. Mouton de Gruyter.CrossRefGoogle Scholar
Cristianini, Nello and Matthew W., Hahn. 2007. Introduction to Computational Genomics: A Case Studies Approach. Cambridge University Press.Google Scholar
DNA Data Bank of Japan. Center for Information Biology, National Institute of Genetics, www.ddbj.nig.ac.jp.
Friedl, Jeffrey E.F. 2006. Mastering Regular Expressions, third edition. O'Reilly Media.Google Scholar
Genome Composition Database. Research Organization of Information and Systems, National Institute of Genetics, http://esper.lab.nig.ac.jp/study/genome.
Joyce, James. 1939. Finnegans Wake. Viking Penguin Inc.Google Scholar
Jurafsky, Daniel and James H., Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, second edition. Pearson Prentice Hall.Google Scholar
Manning, Christopher D. and Hinrich, Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT Press.Google Scholar
Manning, Christopher D., Prabhakar, Raghavan, and Hinrich, Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press.CrossRefGoogle Scholar
Nucleotide Database. National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/nuccore.
Paar, Christof and Jan, Pelzl. 2010. Understanding Cryptography: A Textbook for Students and Practitioners. Springer.CrossRefGoogle Scholar
Project, Gutenberg. www.gutenberg.org.
Schwartz, Randal L., Brian d, foy, and Tom, Phoenix. 2011. Learning Perl, sixth edition. O'Reilly & Associates.Google Scholar
Sinkov, Abraham. 1966. Elementary Cryptanalysis: A Mathematical Approach. The Mathematical Association of America.Google Scholar
Teetor, Paul. 2011. R Cookbook. O'Reilly Media.Google Scholar
Unicode 6.1 Character Code Charts. The Unicode Consortium. www.unicode.org/charts.
,University of Chicago Press. 2010. The Chicago Manual of Style, sixteenth edition. University of Chicago Press.Google Scholar
Wall, Larry, Tom, Christiansen, and Jon, Orwant. 2000. Programming Perl, third edition. O'Reilly Media.Google Scholar
,Wikibooks. Python programming/strings, www.wikibooks.org/wiki/Python_Programming/Strings.
Regular Expressions. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/RegularExpressions.html.
Working with String Patterns. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/WorkingWithStringPatternsOverview.html.
Abbott, Paul. 1998. Finding roots in an interval. The Mathematica Journal, 7(2), 108–112.Google Scholar
Bailey, David H., Jonathan M., Borwein, Cristian S., Calude, et al. 2012. Normality and the digits of π, www.david-hbailey.com/dhbpapers/normality-digits-pi.pdf.
Bowerman, Bruce L., Richard T., O'Connell, and Anne B., Koehler. 2005. Forecasting, Time Series, and Regression: An Applied Approach. Thomson Brooks/Cole.Google Scholar
Casti, John L. 1992. Reality Rules I, Picturing the World in Mathematics – The Fundamentals. John Wiley & Sons.Google Scholar
Cook, Stephen A. 2000. The P versus NP Problem. Manuscript prepared for the Clay Mathematics Institute for the Millennium Prize Problems, www.claymath.org/millennium/P_vs_NP.Google Scholar
Gardner, Martin. 1992. Fractal Music, Hypercards, and More… Mathematical Recreations from Scientific American Magazine. W.H. Freeman.Google Scholar
Goldreich, Oded. 2010. P, NP, and NP-Completeness: The Basics of Computational Complexity. Cambridge University Press.CrossRefGoogle Scholar
Golin, Mordecai and Robert, Sedgewick. 1988. Analysis of a simple yet efficient convex hull algorithm. Proceedings of the Fourth Annual Symposium on Computational Geometry, 153–163, ACM.Google Scholar
Graham, Ronald. 1994. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1, 1972.Google Scholar
Heckbert, Paul S., ed. 1994. Graphics Gems IV. Academic Press.
Jarvis, Ray A. 1973. On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters, 2, 18–21.CrossRefGoogle Scholar
Lawler, Eugene L., Jan Karel Lenstra, A.H.G.Rinnooy, Kan, and D.B., Shmoys. 1985. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons.Google Scholar
Lima, Manuel. 2011. Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press.Google Scholar
Lin, Shen 1965. Computer solutions of the traveling salesman problem. Bell System Technical Journal, 44, 2245–2269.CrossRefGoogle Scholar
Mandelbrot, Benoît. 1982. The Fractal Geometry of Nature. W.H. Freeman.Google Scholar
Maor, Eli. 1998. Trigonometric Delights. Princeton University Press.Google Scholar
Mathews, Max V., Joan E., Miller, F. Richard, Moore, et al. 1969. The Technology of Computer Music. The MIT Press.Google Scholar
O'Rourke, Joseph. 1998. Computational Geometry in C, second edition. Cambridge University Press.CrossRefGoogle Scholar
Pemmaraju, Sriram V. and Steven S., Skiena. 2003. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press.CrossRefGoogle Scholar
Pierce, John R. 1983. The Science of Musical Sound. W.H. Freeman.Google Scholar
Platzman, Loren K. and John J., Bartholdi III. 1989. Spacefilling curves and the planar traveling salesman problem. Journal of the ACM, 36, 719–737.CrossRefGoogle Scholar
Porta, Horacio, William, Davis, and Jerry, Uhl. 1994. Calculus&Mathematica. Addison-Wesley.Google Scholar
Preparata, Franco P. and Michael Ian, Shamos. 1985. Computational Geometry: An Introduction. Springer-Verlag.CrossRefGoogle Scholar
Rosenkrantz, Daniel J., Richard E., Stearns, and Philip M., Lewis. 1977. An analysis of several heuristics for the traveling salesman problem. SIAM Journal of Computing, 6(3), 563–581, http://dx.doi.org/10.1137/0206041.CrossRefGoogle Scholar
Rossing, Thomas D. 1990. The Science of Sound, second edition. Addison-Wesley.Google Scholar
Shamos, Michael I. and Dan, Hoey. 1975. Closest-point problems. In 16th Annual Symposium on Foundations of Computer Science. IEEE.Google Scholar
Shepard, Roger. 1962. The analysis of proximities: multidimensional scaling with an unknown distance factor. Psychometrika, 27, 125–140.Google Scholar
Thomsen, Dietrich E. 1980. Making music – fractally. Science News, 117, 187.CrossRefGoogle Scholar
Voss, Richard F. and John, Clarke. 1978. 1/f noise in music and speech. Journal of the Acoustical Society of America, 63, 258–263.Google Scholar
Weisstein, Eric W. Hypocycloid. MathWorld, http://mathworld.wolfram.com/Hypocycloid.html.
Three-Dimensional Graphics Directives (tutorial). Wolfram Mathematica Documentation Center, http://reference.-wolfram.com/mathematica/tutorial/ThreeDimensionalGraphicsDirectives.html.
Three-Dimensional Graphics Primitives (tutorial). Wolfram Mathematica Documentation Center, http://reference.-wolfram.com/mathematica/tutorial/ThreeDimensionalGraphicsPrimitives.html.
Boyer, Carl B. 1985. A History of Mathematics. Princeton University Press.Google Scholar
Davis Joseph, H. 2004. An annual index of US industrial production, 1790–1915. Quarterly Journal of Economics, 119(4): 1177–1215. Data available online at www.nber.org/data/industrial-production-index/.Google Scholar
Duchamp, Marcel. 1926. Anémic Cinéma. Video available online at www.ubu.com/film/duchamp_anemic.html.Google Scholar
Grünbaum, Branko. 1984. On Venn diagrams and the counting of regions. The College Mathematics Journal, 15, 433–435.Google Scholar
Lawler, Eugene L., Jan Karel Lenstra, A.H.G.Rinnooy, Kan, and D.B., Shmoys. 1985. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons.Google Scholar
Ruskey, Frank and Mark, Weston. 2005. A survey of Venn diagrams. The Electronic Journal of Combinatorics, DDS5, www.combinatorics.org/files/Surveys/ds5/VennEJC.html.Google Scholar
Advanced Dynamic Functionality. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-mathematica/tutorial/AdvancedDynamicFunctionality.html.
Control Objects. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/guide/-ControlObjects.html.
Introduction to Dynamic. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/IntroductionToDynamic.html.
Bourke, Paul. 2001. Julia Set Fractal (2D), www.paulbourke.net/fractals/juliaset.Google Scholar
Knuth, Donald E. 1992. Literate Programming. Center for the Study of Language and Information.Google Scholar
Peitgen, Heinz-Otto, Hartmut, Jürgens, and Dietmar, Saupe. 1992. Chaos and Fractals: New Frontiers of Science. Springer-Verlag.CrossRefGoogle Scholar
Barber, Michael N. and Barry W., Ninham. 1970. Random and Restricted Walks: Theory and Applications. Gordon and Breach.Google Scholar
Feller, William. 1968. An Introduction to Probability Theory and its Applications, Volume 1, third edition. John Wiley & Sons.Google Scholar
Gaylord, Richard J. and Paul R., Wellin. 1995. Computer Simulations with Mathematica, Explorations in Complex Physical and Biological Systems. TELOS/Springer-Verlag.Google Scholar
Madras, Neal and Gordon, Slade. 1996. The Self-Avoiding Walk. Birkhäuser.CrossRefGoogle Scholar
Pearson, Karl. 1905. The problem of the random walk, Nature, 72, 294.CrossRefGoogle Scholar
Weiss, George H. 1983. Random walks and their applications. American Scientist, 71, 65–71.Google Scholar
Weiss, George H. 1994. Aspects and Applications of the Random Walk. North-Holland.Google Scholar
Weisstein, Eric W. Sphere point picking. MathWorld, http://mathworld.wolfram.com/SpherePointPicking.html.
Wolfram, Workbench. Mathematica development user guide, http://reference.wolfram.com/workbench.
Crandall, Richard E. 1994. Projects in Scientific Computation. TELOS/Springer-Verlag.CrossRefGoogle Scholar
Crandall, Richard E. 1996. Topics in Advanced Scientific Computation. TELOS/Springer-Verlag.CrossRefGoogle Scholar
Floyd, Robert W. 1979. The paradigms of programming. Communications of the ACM, 22(8).CrossRefGoogle Scholar
Mangano, Salvatore. 2010. Mathematica Cookbook. O'Reilly Media.Google Scholar
The Mathematica Journal. Wolfram Media, www.mathematica-journal.com.
Trott, Michael. 2004. The Mathematica Guidebook for Programming. Springer-Verlag.CrossRefGoogle Scholar
Trott, Michael. 2004. The Mathematica Guidebook for Graphics. Springer-Verlag.CrossRefGoogle Scholar
Wickham-Jones, Tom. 1994. Computer Graphics with Mathematica. TELOS/Springer-Verlag.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Paul Wellin
  • Book: Programming with <I>Mathematica</I>®
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511972942.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Paul Wellin
  • Book: Programming with <I>Mathematica</I>®
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511972942.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Paul Wellin
  • Book: Programming with <I>Mathematica</I>®
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511972942.016
Available formats
×