Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Mathematical Preliminaries
- 3 Dynamic Response
- 4 State-Space Representation
- 5 Analysis of Single-Loop Control Systems
- 6 Design and Tuning of Single-Loop Control Systems
- 7 Stability of Closed-Loop Systems
- 8 Frequency-Response Analysis
- 9 Design of State-Space Systems
- 10 Multiloop Systems
- MATLAB Tutorial Sessions
- Homework Problems
- References
- Index
1 - Introduction
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Mathematical Preliminaries
- 3 Dynamic Response
- 4 State-Space Representation
- 5 Analysis of Single-Loop Control Systems
- 6 Design and Tuning of Single-Loop Control Systems
- 7 Stability of Closed-Loop Systems
- 8 Frequency-Response Analysis
- 9 Design of State-Space Systems
- 10 Multiloop Systems
- MATLAB Tutorial Sessions
- Homework Problems
- References
- Index
Summary
Control systems are tightly intertwined in our daily lives so much so that we take them for granted. They may be as low tech and unglamorous as our flush toilet. Or they may be as high tech as electronic fuel injection in our cars. In fact, there is more than a handful of computer control systems in a typical car that we now drive. In everything from the engine to transmission, shock absorber, brakes, pollutant emission, temperature, and so forth, there is an embedded microprocessor controller keeping an eye out for us. The more gadgetry, the more tiny controllers pulling the trick behind our backs. At the lower end of consumer electronic devices, we can bet on finding at least one embedded microcontroller.
In the processing industry, controllers play a crucial role in keeping our plants running – virtually everything from simply filling up a storage tank to complex separation processes and chemical reactors.
As an illustration, let's take a look at a bioreactor (Fig. 1.1). To find out if the bioreactor is operating properly, we monitor variables such as temperature, pH, dissolved oxygen, liquid level, feed flow rate, and the rotation speed of the impeller. In some operations, we may also measure the biomass and the concentration of a specific chemical component in the liquid or the composition of the gas effluent. In addition, we may need to monitor the foam head and make sure it does not become too high.
- Type
- Chapter
- Information
- Process ControlA First Course with MATLAB, pp. 1 - 5Publisher: Cambridge University PressPrint publication year: 2002