Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
1 - Sums of Independent Random Variables
Published online by Cambridge University Press: 07 November 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Sums of Independent Random Variables
- 2 The Central Limit Theorem
- 3 Infinitely Divisible Laws
- 4 Lévy Processes
- 5 Conditioning and Martingales
- 6 Some Extensions and Applications of Martingale Theory
- 7 Continuous Parameter Martingales
- 8 Gaussian Measures on a Banach Space
- 9 Convergence of Measures on a Polish Space
- 10 Wiener Measure and Partial Differential Equations
- 11 Some Classical Potential Theory
- References
- Index
Summary
Chapter 1 contains a sampling of the standard, point-wise convergence theorems dealing with partial sums of independent random variables. These include the Weak and Strong Laws of Large Numbers as well as Hartman–Wintner’s Law of the Iterated Logarithm. In preparation for the law of the iterated logarithm, Cramér’s theory of large deviations from the law of large numbers is developed in §1.3. Everything here is very standard, although I feel that my passage from the bounded to the general case of the law of the iterated logarithm has been considerably smoothed by the ideas that I learned in conversation with M. Ledoux.
- Type
- Chapter
- Information
- Probability Theory, An Analytic View , pp. 1 - 50Publisher: Cambridge University PressPrint publication year: 2024